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Abstract: Each year, the NCAA Division I Men’s Basketball
Tournament attracts popular attention, including bracket
challenges where fans seek to pick the winners of the
tournament’s games. However, the quantity and unpre-
dictable nature of games suggest a single bracket will
likely select some winning teams incorrectly even if cre-
ated with insightful and sophisticated methods. Hence,
rather than focusing on creating a single bracket to per-
form well, a challenge participant may wish to create a
pool of brackets that likely contains at least one high-
scoring bracket. This paper proposes a power model to
estimate tournament outcome probabilities based on past
tournament data. Bracket pools are generated for the
2013–2019 tournaments using six generators, five using
the power model and one using the Bradley-Terry model.
The generated brackets are assessed by the ESPN scor-
ing system and compared to those produced by a tradi-
tional pick favorite approach aswell as the highest scoring
brackets in the ESPN Tournament Challenge for each year.

Keywords: bracket generation; Bradley-Terry; March
madness; model selection; power model; sports
forecasting

1 Introduction
In the NCAA Division I Men’s Basketball Tournament,
teams compete in a 68-team single-elimination bracket
to determine a national champion. In the years since
1985 (referred to as the modern era), the tournament has
included at least 64 teams and six main rounds; Table 12
in Appendix A.1 lists the official and colloquial names
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of all six rounds. The tournament attracts popular atten-
tion throughout the United States; before the tournament
begins, many fans participate in bracket challengeswhere
they pick the winner of each of the tournament’s 63 games
(the First Four play-in games are not included in any such
challenges). The term bracket, originally used to describe
the structure of a sports tournament, is also used colloqui-
ally to refer to a “filled-out” bracket, that is, a complete
set of game predictions for a tournament. As the tourna-
ment progresses, all of the submitted brackets are scored
based on their correct picks, with correct picks in later
rounds typically earning more points than correct picks
in earlier rounds. The unpredictable nature of game out-
comes and the large number of games suggest that a single
bracket, even if it has been created with insightful and
sophisticated methods and data, is likely to incorrectly
select some winning teams. Hence, rather than selecting
a single bracket that seeks to correctly pick all game win-
ners, a challenge participant may wish to create a pool of
brackets such that at least one bracket in the pool is likely
to score well.

One appealing approach for creating a bracket is to
select the favorite (based on seed) to win in each game.
The participating teams are divided into four regions,
each comprising sixteen teams seeded between 1 and 16,
with lower numbers signifying more highly-ranked teams.
Hence, a pick favorite approach deterministically specifies
all picks in the four regions (i.e. 60 of the 63 games), result-
ing in the four 1-seeds advancing to the Final Four. Eight
different pick favorite brackets can be created, depending
on which of the equally-seeded regional champions are
selected to win in the three remaining games of the tour-
nament. While these eight brackets, collectively referred
to as the pick favorite pool, appear to be the most likely
outcomes, they represent only a very small portion of the
more than nine quintillion

(︀
9 × 1018

)︀
possible brackets.

Moreover, over the last five tournaments, there have been
on average 13 upsets in the first two rounds of play, whose
winners a pick favorite bracket will not select correctly.
Creating high-quality brackets depends on the ability to
correctly identify upsets.

While upsets have reliably occurred in the tour-
nament, and hence, must be present in brackets that
are likely to score well, these upsets must be selected
intelligently. One possible approach is to generate
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brackets according to the probability mass function (PMF)
of tournament outcomes. From this perspective, the out-
come of each tournament is one of 263 potential outcomes
of a discrete random variable, and the PMF prescribes
the probability of each of these outcomes for a given
year. However, the PMF is unknown and must be esti-
mated from data, which may include past tournament
outcomes, team performance in regular season games,
or other factors. Many approaches have been proposed
to estimate the PMF, which are useful if the objective
is to generate brackets to maximize expected winnings
in a bracket pool (Kenter 2016). One approach consid-
ers factors such as the victory margin (using a team’s
performance history) and the game’s venue to predict
the result of each game. For example, Lopez and Math-
ews (2015) proposes a prediction model by combining
the point spreads set by Las Vegas sports-books with
possession-based team efficiency metrics. Gupta (2015)
proposes a rating system and a four-predictor probability
model to generate brackets for the 2009–2014 tourna-
ments. Ruiz and Perez-Cruz (2015) modifies a classical
model for soccer to model both the specific behavior of
each conference and different strategies of teams. Yuan
et al. (2015) proposes methods to forecast the results of
the tournament and discusses the difficulties in using
publicly available data while presenting novel ideas for
post-processing statistical forecasts. Kaplan and Garstka
(2001) uses Sagarin ratings (i.e. expected scoring rates on
a team-by-team basis) to estimate the win probability of
each team. West (2006, 2008) presents an ordinal logistic
regression method to predict how many games each team
will win in the tournament and compares the results to
tournament simulations using the Bradley-Terry model
(Bradley and Terry 1952). Koenker and Bassett Jr. (2010)
defines offensive and defensive strength parameters and a
home adjustment factor to compute the win probability of
each team. Kvam and Sokol (2006) uses victory margins of
teams in regular-seasongames from1999 to 2005 topredict
gamewinners based on aMarkov chain/logistic regression
model. While these models study the performance of each
team more precisely, their parameters depend on teams’
specific information such as victory margin and game’s
venue. Therefore, they cannot be easily applied to other
tournaments.

An alternative approach uses seeds to estimate the
win probability of each team in each round (see for
example Boulier and Stekler 1999; Jacobson et al. 2011;
Khatibi, King, and Jacobson 2015). These models consider
all teams of the same seed number as equivalent, ignoring
factors such as the game’s venue and the victory margin.
Assuming the same performance for all teams of the same

seed number may increase the estimation error but sim-
plifies the computational effort, since model parameters
depend only on a team’s seed number. This simplifica-
tion gives seed-based models flexibility for use in future
tournaments and other sports competitions with the same
structure.

This paper proposes a probability model that implic-
itly estimates the PMF of bracket outcomes with the end
goal of generating strong bracket pools. The power model
estimates the win probability of each team in a game as a
power function of the teams’ seed numbers. This approach
generalizes the Bradley-Terry model, adding round-
dependent parameters and using a different estimation
technique (Bradley and Terry 1952). The power model is
used in a bracket generation algorithm with five differ-
ent parameter settings to define five randomized bracket
generators. A Bradley-Terry-based generator is also con-
sidered as a baseline. These six generators are evaluated
by using each to create pools of brackets for the 2013–2019
tournaments and scoring each bracket with the ESPN scor-
ing system. The bracket pools are then evaluated against
the pick favorite pool and the highest-scoring brackets in
theESPNTournamentChallenge for eachyear. The six gen-
erators are then compared by the multiple comparisons
with the best (MCB) method proposed by Hsu (1984).

The ESPN scoring system awards 10 points for each
correctly picked winner in Round 1. There are 32 games
played in total across four regions in Round 1, which
results in a maximum of 320 points for this round. The
value of each correct pick in a subsequent round is twice
that of the previous round; hence, correctly picking the
winner of the final game earns 320 points. For each round,
the maximum score is the same (320 points). The maxi-
mum total score, which is achieved by correctly picking
the winner in all 63 games of the tournament, is 1920.
While points are awarded for correctly picking winners of
individual games, correct picks in later rounds are criti-
cal, both because they individually earn more points and
because they implicitly earn points for correct picks made
in earlier rounds. For example, correctly picking the cham-
pion team secures 630 points since at least one winner
is correctly picked in each of the six rounds. Therefore,
a good generator must minimize the number of incorrect
picks in later rounds. However, as the incorrect picks of
the earlier rounds propagate through the tournament, the
best generated bracket must also correctly pick many of
the winners in the beginning rounds.

The power model has been implemented at (http://
bracketodds.cs.illinois.edu) as a web-based bracket gen-
erator, which has attracted significant public and media
attention. This web site was launched as a tool tomake the
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public familiar with the mathematical modeling of sports
events and data analytics.

The paper is organized as follows. Section 2 intro-
duces the power model, proposes six bracket generators,
and establishes how these generators will be evaluated.
Section 3 reports the power and Bradley-Terry model
parameters for predicting tournament outcomes in 2013–
2020 and the results of bracket generation experiments.
Section 4 provides concluding remarks and potential
directions for future work.

2 The power model
This section introduces the power model for estimat-
ing win probabilities of all possible seed match-ups and
presents a general procedure for generating brackets with
these estimates.

2.1 Estimating win probabilities

In a game between two different seed numbers, the win
probability typically favors the teamwith the smaller seed
number, i.e. the stronger seed. The simplest function to
model a relation between the teams’ seed numbers with a
largerweight on better seeds is a linear function: In a game
between two teams with seed numbers s1 and s2, the lin-
ear function s2/(s1 + s2) can be used to estimate the win
probability of seed s1. However, the linear estimator has
two drawbacks. First, while the results of the modern era
tournaments show that the performance of a seed number
depends on the round (discussed in more detail later in
this section), the outcome of the linear estimator is inde-
pendent of the roundnumber. Second, the linear estimator
assumes the relative strength of a team is proportional to
the reciprocal of its seed number, which fails to capture
more nuanced patterns in team strength.

To avoid these drawbacks of the linear estimator, the
power model estimates the win probability of each seed in
a game as a power function of the seeds’ ratio. Throughout
the following definitions, let s1 and s2 be seeds with s1 <

s2. Let pj,(s1 ,s2) denote the probability that s1 will defeat s2
in Round j. The odds ratio for seed s1 is modeled as

pj,(s1 ,s2)
1 − pj,(s1 ,s2)

=
(︂
s2
s1

)︂αj,(s1 ,s2)
, (1)

where αj,(s1 ,s2), referred to as the α-value, is a func-
tion of the round number (j) and the seeds (s1 and s2).

An equivalent definition using the logit function is

logit
(︀
pj,(s1 ,s2)

)︀
= log

(︂ pj,(s1 ,s2)
1 − pj,(s1 ,s2)

)︂
= αj,(s1 ,s2) ·

(︀
log(1/s1) − log(1/s2)

)︀
. (2)

For comparison, the Bradley-Terry model is

logit
(︀
pj,(s1 ,s2)

)︀
=

pj,(s1 ,s2)
1 − pj,(s1 ,s2)

= βs1 − βs2 , (3)

where βs1 and βs2 are score parameters for their respective
seeds (Bradley and Terry 1952). The power model there-
fore generalizes the Bradley-Terry model by starting with
score parameters βs = log(1/s) for s ∈ {1, 2, . . . , 16} and
adding round-dependent logit scaling factors αj,(s1 ,s2).
This round-dependent scaling, which allows probability
estimates for the same seed match-up to vary between
rounds, is a key advantage of the power model over the
Bradley-Terry model. Data from past tournaments sug-
gest the relative performance of seeds varies across the
rounds, warranting this increased granularity of para-
meters. While the sample sizes for individual match-ups
are too small to provide statistically significant evidence of
this variation, the specific outcomes present some coun-
terintuitive scenarios. For example, 5-seeds have surpris-
ingly won all four match-ups against 2-seeds in the Elite
Eight, but such a small sample size precludes strong sta-
tistical conclusions. Therefore, the overall win rate of the
stronger seed is compared across rounds. In the modern
era (1985–2019), the stronger seed has won in 200 of 280
games (71.4%) in the Sweet Sixteen and 77 of 140 games
(55%) in the Elite Eight. The standard z-test for difference
in proportions is used to test the null hypothesis that the
proportion of games won by the stronger seed is the same
in both rounds against a one-sided alternative that the
proportion is greater in the Sweet Sixteen. The z statis-
tic obtained is 3.344, and the corresponding p-value of
0.00041 is significant at the 0.05 level, suggesting that
the null hypothesis should be rejected. The one-sided test
therefore provides evidence that stronger seeds are less
successful in the Elite Eight than in the Sweet Sixteen. It
must be mentioned that the teams competing in the Elite
Eight necessarily won their Sweet Sixteen games, so these
samples are not entirely independent. As further justifi-
cation of round-dependent parameters, an earlier study
finds evidence that 1-, 2-, and 3-seeds do not have sig-
nificantly different historical win percentages in the later
rounds (Jacobson and King 2009).

To estimate the power model parameters for year y,
tournament games from 1985 through the year y − 1 are
used as the training data set. These data are taken from
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the official NCAA 2019 Men’s Final Four Records Book
(NCAA 2019). The specific data extracted are nj,(s1 ,s2),
the number of times an s1-seed has defeated an s2-
seed in Round j in the training data set, for all j ∈
{1, 2, . . . , 6} and s1, s2 ∈ {1, 2, . . . , 16}. Let nj,(s1 ,•) =∑︀

s2 nj,(s1 ,s2) denote the number of times an s1-seed has
won in Round j over any other seed. Furthermore, let
p̄j,(s1 ,s2) = nj,(s1 ,s2)/(nj,(s1 ,s2) + nj,(s2 ,s1)) be the proportion
of times an s1-seed has defeated an s2-seed in Round j. The
total number of games played in Round j is represented as
nj =

∑︀
s1 nj,(s1 ,•). To obtain an α-value estimate α̂j,(s1 ,s2),

one can then substitute the observed proportion p̄j,(s1 ,s2)
for the unknown probability pj,(s1 ,s2), assuming s1 and s2
have met in Round j before. Rearranging (1) then yields

α̂j,(s1 ,s2) ≡
logit

(︀
p̄j,(s1 ,s2)

)︀
log(1/s1) − log(1/s2)

. (4)

Finally, pj,(s1 ,s2) can be estimated as

p̂j,(s1 ,s2) ≡
sα̂j,(s1 ,s2)2

sα̂j,(s1 ,s2)1 + sα̂j,(s1 ,s2)2

. (5)

The α-value summarizes the performance history of
seeds s1 and s2 in Round j. By (5), a positive α-value indi-
cates a larger winning probability for the stronger seed
while a negative value indicates a larger winning proba-
bility for the weaker seed. Note that setting α̂j,(s1 ,s2) = 0
is equivalent to estimating a 0.5 winning probability for
each seed (i.e. picking thewinner randomly), while setting
α̂j,(s1 ,s2) = +∞ results in the Pick Favorite (PF) approach,
which always picks the stronger seed as the winner. One
drawback of this method is that it ignores the number
of games between two seeds (e.g. there is no difference
between two pairs of seeds whose pairwise win records
are 40–60 and 4–6). As more tournaments occur, provid-
ing more data, this limitation will have less and less of an
impact.

The estimated probability p̂j,(s1 ,s2) matches the
observed proportion p̄j,(s1 ,s2), which follows directly from
(4) and (5). Matching the estimated probability to the
observed proportion in this manner is of course only one
of many valid approaches to choosing parameters.

Small training data setsmay cause extreme parameter
values. If p̄j,(s1 ,s2) is 1 or 0, indicating one of the seeds
has always won in past meetings, then α̂j,(s1 ,s2) = ±∞.
This scenario is particularly likely in later rounds since
they have so few games and more possible match-ups.
Every possible match-up in Round 1 always occurs four
times per year, yielding 140 games each since 1985. How-
ever, there are

(︀16
2

)︀
= 120 possible match-ups in Round

5 between distinct seeds, and the 68 Round 5 games in
the modern era have only included 20 of these. Further-
more, 11 of these 20 have occurred only once, guarantee-
ing p̄j,(s1 ,s2) ∈ {0, 1}. This precludes the seed which has
always lost from being chosen as the winner even though
that seed can conceivably win a game in a future tourna-
ment. Establishing an upper bound K on themagnitude of
the α-value estimates prevents this problem, so this mod-
ification will be used in applying the power model to the
NCAA tournament.

Furthermore, some match-ups, particularly in later
rounds, may have no prior data, i.e. nj,(s1 ,s2) = nj,(s2 ,s1) =
0, so α̂j,(s1 ,s2) is undefined. One workaround is comput-
ing a weighted average α̂j of the α-value estimates for all
observed match-ups in a round:

α̂j =
1
nj

·
∑︁

(s1 ,s2)∈S

(︀
nj,(s1 ,s2) + nj,(s2 ,s1)

)︀
· α̂j,(s1 ,s2), (6)

where S = {(s1, s2) : 1 ≤ s1 < s2 ≤ 16} is the set of all
possible pairings of stronger and weaker seeds. Games
between identical seeds,whichmay occur in Rounds 5 and
6, are not included in the computation of α̂j.

The power model can then use α̂j as the estimated α-
value for all match-ups in that round. Effectively, α̂j sum-
marizes the performance of stronger seeds versus weaker
seeds in Round j, capturing the overall likelihood of upsets
in the round. In Rounds 2–6, many possible match-ups
have few or no occurrences in the NCAA tournament his-
tory since 1985, so this modification will be applied to
those rounds.

2.2 Generating brackets

Bracket generation requires selecting the winner of all
63 games. Given win probability estimates such as those
provided by the power model, the general procedure
presented in Algorithm 1 generates a random bracket.
Given estimated win probabilities (from, e.g. the power
or Bradley-Terry models) P = {p̂j,(s1 ,s2)}j∈[6],(s1 ,s2)∈S, the
procedure generates an entire bracket round by round
by choosing s1 (resp., s2) as the winner with probability
p̂j,(s1 ,s2) (resp., 1 − p̂j,(s1 ,s2)). The input r allows for the
seeds reaching the r-th round to be sampled by some other
model, implemented as Sample; this may be desirable if
one wishes to approximatelymatch the historical distribu-
tion of seeds reaching later rounds. The provided Sample
functionmay sample seeds independently or dependently.

When r = 1, the Sample parameter is unnecessary
since the seeds in Round 1 are already fixed. However, set-
ting r = 1 maximizes the potential for erroneous picks in
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Algorithm 1: Generate an NCAA tournament bracket
1 Function:GenerateBracket(P, r, Sample)
Input : Estimated win probabilities P = {p̂j,(s1 ,s2)}j∈[6],(s1 ,s2)∈S; round index

r ∈ {1, 2, . . . , 6}; sampling function Sample
Output: A bracket, i.e. predicted winners of all 63 tournament games

2 Sample which teams reach Round r using Sample
3 Fix game outcomes in prior rounds, as needed, to ensure sampled teams reach Round r

4 for j = 1 to 6 do
5 foreach game g in Round j do
6 if outcome of g is not yet fixed then
7 s1 ←seed of first team (t1) predicted to play in g
8 s2 ←seed of second team (t2) predicted to play in g
9 rand ← uniform random real number between 0 and 1
10 if rand < p̂j,(s1 ,s2) then
11 Pick t1 as the winner of g
12 end
13 else
14 Pick t2 as the winner of g
15 end
16 end
17 end
18 end

19 return bracket (predicted winners of all 63 games)

early rounds to propagate through the bracket, so r = 4, 5,
and 6 are also considered in this study. Jacobson et al.
(2011) finds that the truncated geometric distribution is a
reasonable fit for the observed seed distribution in Rounds
4–6. The truncated geometric distribution for a random
variable X with parameters q and imax is defined by the
probability mass function Pr[X = i] = kq(1−q)i−1 for i =
1, 2, . . . , imax, where k = 1/(1−(1−q)imax ) is a coefficient
included to ensure the probabilities sum to one.

Table 1 illustrates how the truncated geometric dis-
tribution is fit to the observed Final Four seed distribu-
tion from 1985 through 2019. The geometric parameter q
is estimated as the reciprocal of the average seed number,
or

q̂ =
1∑︀16

i=1 i · n4,(i,•)
.

(Recall that n4,(i,•) denotes the total number of times seed
i has won in Round 4, and hence the total number of
times seed i has reached the Final Four.) The geometric
PMF for q̂ is then truncated at 16, yielding the truncated
geometric PMF. The expected counts are computed by
multiplying the total number of observations by the trun-
cated geometric PMF. The goodness-of-fit test statistic is

Table 1: Truncated geometric distribution fit to observed final four
seed distribution for 1985–2019.

Seed Observed
count

Truncated
geometric PMF

Expected
count

1 57 0.3548 49.665
2 29 0.2290 32.063
3 17 0.1479 20.699
4 13 0.0954 13.362
5 7 0.0616 8.626
6 3 0.0398 5.569
7 3 0.0257 3.595
8 5 0.0166 2.321
9 1 0.0107 1.498
10 1 0.0069 0.967
11 4 0.0045 0.624
12 0 0.0029 0.403
13 0 0.0019 0.260
14 0 0.0012 0.168
15 0 0.0008 0.108
16 0 0.0005 0.070
Total 140 1.000 140

χ2 = 18.321, which corresponds to a p-value of 0.246 at 15
degrees of freedom. The p-value suggests the null hypoth-
esis that the Final Four seeds follow a truncated geometric
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distribution should not be rejected, and hence the trun-
cated geometric distribution may be used to sample the
Final Four seeds. However, the 11-seeds have reached the
Final Four farmore often than the truncated geometric dis-
tribution would expect. Because of this and other overrep-
resented seeds for the truncated geometric fits, the bracket
generation experiments in this paper use a two-stage
sampling procedure which incorporates the truncated
geometric distribution; see Appendix A.2 for a detailed
description.

The SampleF4A function, one of two sampling func-
tions used with r = 5, generates four independent and
identically distributed (IID) samples from the truncated
geometric distribution as the Final Four seeds. Each team
in the Final Four comes from a different region, so inde-
pendence is a reasonable assumption and repeat seed
numbers are possible. The SampleF4B function models
seeds 1–6 and 7–12 separately (and never samples seeds
13–16). For seeds 1–6, a truncated geometric distribution
is fit directly, i.e. without the two-stage sampling proce-
dure described in Appendix A.2. For seeds 7–12, a two-
value distribution is used in which seeds 7, 8, and 11 are
sampled with probability 2/9, and the remaining seeds are
sampled with probability 1/9. To choose which set of seeds
(1–6 or 7–12) to sample from, SampleF4B simply randomly
chooses based on the historical proportions. For example,
from 1985 through 2019, 126 of 140 Final Four teams have
been seeded 1–6, so the truncated geometric distribution
for seeds 1–6 is usedwith probability 0.9 and the two-value
distribution for seeds 7–12 is used with probability 0.1. The
four seeds returned by SampleF4B are then IID samples
from this two-part distribution.

The SampleNCG function to be used with r = 6 is
defined similarly, generating two IID samples from a trun-
cated geometric distribution fit to the historical distribu-
tion of seeds reaching Round 6. However, SampleNCG
must also select the region of both sampled seeds, since
two regions (each with all 16 seeds) feed into each of the
Round 6 slots. The region of each sampled seed is cho-
sen by simulating a fair coin toss, implicitly assuming
identical seeds as equally strong.

The IID sampling approach in SampleF4A,
SampleF4B, and SampleNCG does not work for Sam-
pleE8 (r = 4), since each team is either from the top
half of its region (seeds 1, 16, 8, 9, 5, 12, 4, 13) or the bot-
tom half (seeds 6, 11, 3, 14, 7, 10, 2, 15). Therefore, two
separate truncated geometric distributions are fit, one
for each half-region. The SampleE8 function then gen-
erates four IID samples from each truncated geometric
distribution, which assumes independence between the
(half-)regions.

Table 2: Bracket generator variations for computational experi-
ments.

Name P Model r Sample

R64 Power 1 –
E8 Power 4 SampleE8
F4A Power 5 SampleF4A
F4B Power 5 SampleF4B
NCG Power 6 SampleNCG
B-T Bradley-Terry 1 –

Table 2 lists the six bracket generator variations con-
sidered in this paper, each of which uses Algorithm 1 with
a particular set of parameters.

2.3 The implicit PMF

Since the power model estimates win probabilities for
all possible match-ups, it implicitly defines a PMF on
the sample space of all 263 possible brackets. Let b =
(b1, b2, b3, b4, b5, b6) be a representation of a bracket as
its picks made in each of the six rounds. The estimated
probability of a given bracket b is given by

Pr(b) = Pr(b6 | b5) · Pr(b5 | b4) · Pr(b4 | b3)
· Pr(b3 | b2) · Pr(b2 | b1) · Pr(b1), (7)

where Pr(bi | bi−1) is the product of the estimated prob-
abilities for each game in Round i (by an assumption of
independence). The naïve bracket generation procedure
suggested by (7) is to sort all 263 brackets by decreas-
ing probability and, given a desired pool size M, return
theM most likely brackets. This is computationally infea-
sible, though, since 263 is approximately 9 quintillion(︀
9 × 1018

)︀
.

Exploiting the (assumed) independence of the four
regions, an alternative formulation of (7) is

Pr(b) = Pr(b6 | b5) · Pr(b5 | b4) ·
4∏︁

i=1

Pr(region i), (8)

where Pr(region i) is defined as the product of the (con-
ditional) probabilities of the outcomes in each round,
analogous to (7). This formulation suggests a different pro-
cedure: sort all 215 possible region outcomes by decreas-
ing probability, generate four regions by independent
random samples from the top T most likely regions
(weighted according to their estimated probabilities), and
apply the power model probabilities to randomly choose
winners in the Final Four and National Championship
Game. The cutoff T may be as large as 215 = 32, 768,
but since sampling from such a large discrete distribution
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is computationally expensive, a smaller choice such as
T = 100 ismore reasonable. LetMLR100 denote thismost-
likely-regions bracket generator with T = 100. The exper-
imental performance of MLR100 will be compared to that
of the R64 generator in Section 3.3.4.

2.4 Generator evaluation

The six generators listed in Table 2 are compared by gener-
ating several bracket pools with each for the 2013 through
2019 tournaments. Each bracket pool consists of N brack-
ets generated independently with the same generator,
where N is chosen to be much smaller than NESPN for any
given year. Since brackets are generated independently,
a bracket pool may contain duplicates. Furthermore, the
score distribution for the basic power model will be com-
pared against the score distribution for a sample from the
2016 ESPN Tournament Challenge reported by Wright and
Wiens (2016).

The max score and ESPN count metrics measure the
strength of each bracket pool. The max score metric for
a bracket pool, denoted smax, is simply the highest score
achieved in the pool. A participant in a bracket challenge
wins if one of their brackets produces the highest score
among all brackets submitted, so smax is a reasonable
measure of the quality of a bracket pool.

While attaining the unique highest score in a bracket
challenge is desirable, a participant may also be content
with placing on the leaderboard, especially in a large
bracket challenge such as the ESPN Tournament Chal-
lenge. The ESPN Leaderboard consists of the top 100 sub-
missions, as ranked by the ESPN scoring system, among
all brackets submitted to the challenge that year. For a
given year, let lESPN and uESPN be the minimum and max-
imum scores, respectively, in the ESPN Leaderboard, and
let NESPN be the total number of submissions. The ESPN
count metric, denoted nESPN, is the number of brackets
in the pool which would have reached the ESPN Leader-
board in that year, i.e. achieved a score greater than or
equal to lESPN. TheESPNcount provides some indicationof
how a generated bracket pool compares to the entire ESPN
bracket pool. Each bracket pool will also be compared to
the pick favorite pool. Let pPF denote the proportion of
brackets in the pool which achieve a score greater than
or equal to sPF, the maximum score from the pick favorite
pool.

Bracket pools can also be evaluated against the pick
favorite pool. Let sPF denote the maximum score from
the pick favorite pool for a given year. The best of the
pick favorite pool is the bracket which correctly picks the

winners in Rounds 5 and 6, but these picks only matter
if some 1-seeds advance to the Final Four. If few or no
1-seeds reach the Final Four, then the pick favorite pool
scores quite poorly. In particular, if neither team in the
National Championship Game is a 1-seed, then all pick
favorite brackets have the same score and are guaranteed
to earn zero of 640 points in the last two rounds.

Table 3 presents benchmarks from the pick favorite
pool and the ESPN Leaderboard for the 2013 through
2019 tournaments. Naturally, sPF tends to be lower in years
with more upsets. For instance, in 2015, when three 1-
seeds reached the Final Four and two of these reached the
National Championship Game, sPF = 1530, whereas in
2014, when upsets led to a National Championship Game
between a 7-seed and an 8-seed, sPF = 680. The ESPN
Leaderboard score range is more consistent, though it also
tends to be lower in years with more upsets. In the 2018
tournament, for example, the unprecedented upset of a
16-seed over a 1-seed and the appearance of an 11-seed in
the Final Four seem to have shifted the ESPN Leaderboard
score range down.

Once themax score andESPNcountmetrics have been
computed for each bracket pool, the six generators will
be compared with respect to each metric for each year
using Hsu’s multiple comparisons with the best (MCB)
method (Hsu 1984). The MCB method compares different
treatments (in this case, bracket generators) by generat-
ing R replications with each treatment and computing
the sample means of a specified metric. The method then
constructs confidence intervals (CIs) for the difference
between the population mean of the metric for each treat-
ment and the best mean of the other treatments. From
these CIs, one may draw conclusions about the relative
performance of the different treatments. For example, if
the CI for a treatment has a (non-inclusive) lower bound
of zero, then one may conclude (with the chosen confi-
dence level) that that treatment is the best. Similarly, an
upper bound of zero provides evidence that that treatment
is not the best. Bechhofer, Santner, and Goldsman (1995,
Section 4.4) explains the MCB method in greater detail.

Table 3: Benchmarks from pick favorite pool and ESPN Leaderboard
(ESPN.com 2013; Adler 2014; Draper 2016; Ota 2017, 2018, 2019).

Year sPF lESPN uESPN NESPN

2013 1120 1590 1660 8.15 million
2014 680 1520 1730 11 million
2015 1530 1760 1830 11.6 million
2016 870 1630 1730 13 million
2017 1460 1650 1760 18.8 million
2018 1130 1550 1670 17.3 million
2019 1240 1730 1850 17.2 million
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One shortcoming of the ESPN count metric is that it is
difficult to interpret; since N ≪ NESPN, directly comparing
nESPN to the ESPN Leaderboard size of 100 is not infor-
mative. To allow direct comparison to the ESPN bracket
pool, a scaled metric n̂ESPN = nESPN · (NESPN/N) is also
computed. The scaled count n̂ESPN estimates how many
brackets would meet the ESPN Leaderboard score thresh-
old (lESPN) if the same generator were used to produce a
pool of NESPN brackets, assuming the proportion would be
the same. Therefore, n̂ESPN allows for direct comparison,
because if n̂ESPN ≈ 100, then the bracket pool performs
about as well as the ESPN bracket pool. A value of n̂ESPN
greater than 100 suggests the generator is better (for that
year) than the aggregate expertise of the fans creating the
ESPN pool.

3 Results
This section first presents the power model and Bradley-
Terry parameters estimated from historical data for pre-
dicting each of the last seven tournaments (2013–2019)
and the next tournament (2020). Results are then reported
for bracket generation experiments with both the six gen-
erators from Table 2 and the MLR100 generator defined in
Section 2.3.

3.1 Power model parameters

The only parameters of the power model are the α-values.
The Round 1 α-value estimates are presented in Table 4.

Each column shows the α-values for predicting one of the
2013–2019 tournaments. For example, the 2016 column
uses the results of tournaments from 1985 to 2015 as the
data set to estimate α-values for generating brackets for
2016. An upper bound of K = 2 is imposed on the magni-
tude of the α-value estimates, affecting α̂1,(1,16) for 2013–
2018 since no 16-seed had won before the 2018 tourna-
ment. The α-value estimate of 1.77 for 2019, which incor-
porates the 16-seed win in 2018, suggests K = 2 was an
appropriate choice.

Changes in the α-value estimates over time yield
insights into recent tournament trends. For example, the
increasing values of α̂1,(8,9) from 2013 to 2016 indicate the
8-seeds performed better in 2013–2015, which flipped the
sign in 2016. Since α̂1,(8,9) remains close to zero, the out-
come is effectively a coin toss. Furthermore, the decreas-
ing values of α̂1,(6,11) show an improving performance of
11-seeds in recent tournaments.

Table 5 presents the weighted averages α̂j for Rounds
2–6. Note that α̂j is computed after the ±2 cutoff is
applied to each match-up’s α-value estimate as needed.
The α-value estimates for Round 4 are close to zero, indi-
cating the estimated winning probability of each seed is
close to 0.5 and the performance of the teams is (nearly)
independent of the seed number. For example, in three of
the four games of Round 4 in the 2013 tournament, the
weaker seed defeated the stronger one. The large propor-
tion of upsets in Round 4 repeated in 2014, causing the
drop in α̂4 from 2013 to 2015. In every year, α̂4 < α̂5 < α̂6,
which represents the better performance of stronger seeds
in later rounds.

Table 4: Round 1 α-value estimates for the 2013–2020 tournaments.

Parameter 2013 2014 2015 2016 2017 2018 2019 2020

α̂1,(1,16) 2 2 2 2 2 2 1.77 1.78
α̂1,(2,15) 1.45 1.36 1.38 1.40 1.34 1.36 1.38 1.39
α̂1,(3,14) 1.16 1.14 1.13 1.07 1.06 1.08 1.10 1.13
α̂1,(4,13) 1.10 1.10 1.13 1.17 1.16 1.19 1.15 1.14
α̂1,(5,12) 0.76 0.69 0.62 0.68 0.66 0.68 0.73 0.67
α̂1,(6,11) 1.10 1.12 1.08 1.04 0.95 0.87 0.84 0.87
α̂1,(7,10) 1.12 1.18 1.23 1.29 1.25 1.30 1.34 1.22
α̂1,(8,9) −0.61 −0.59 −0.28 0.27 0 0.26 0 −0.49

Table 5:Weighted averages of the α-value estimates in Rounds 2–6 for the 2013–2020 tournaments tournaments.

Parameter 2013 2014 2015 2016 2017 2018 2019 2020

α̂2 1.10 1.03 1.03 1.02 1.01 1.05 1.03 1.09
α̂3 0.91 0.90 0.86 0.88 0.90 0.91 0.86 0.85
α̂4 0.36 0.23 0.19 0.22 0.14 0.12 0.15 0.11
α̂5 0.67 0.70 0.58 0.61 0.64 0.67 0.73 0.62
α̂6 1.41 1.42 1.44 1.44 1.17 1.17 1.20 1.23
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In most cases, incorporating the results of a single
tournament does not have a large impact on the estimated
α-values. However, if the outcome of the games between
two seeds in a tournament deviates substantially from the
prior frequency of observed events, the α-value estimates
may change noticeably when that tournament is added to
the training data set. For example, every 8-seed defeated
every 9-seed in Round 1 of the 2015 tournament, flipping
the sign of α̂1,(8,9) for 2016.

Although the 2020 tournament has not occurred as
of the time of writing, Tables 4 and 5 include entries for
2020 to show the α-values that will be usedwith the power
model to predict outcomes in the 2020 tournament.

3.2 Bradley-Terry model parameters

The sixteen seed-strength parameters for theBradley-Terry
model are estimatedby a standard iterativemaximum like-
lihood estimation algorithm (Hunter 2004). Table 14 in
Appendix A.3 presents the Bradley-Terry parameter esti-
mates for predicting the 2013 through 2020 tournaments.
Figure 1 places the Bradley-Terry win probabilities for pre-
dicting games in Round 1 of the 2020 tournament along-
side the corresponding power model probabilities. The
estimates are similar for most match-ups, but the Bradley-
Terry model has noticeably lower estimates of p1,(6,11)
and p1,(7,10) than the power model, meaning the Bradley-
Terry model will predict more upsets in these match-ups.
The models also disagree on the (8, 9) match-up, with
the power (resp., Bradley-Terry) model slightly favoring 9-
seeds (resp., 8-seeds), but both probability estimates are
within 0.025 of a fair coin toss.
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Figure 1: Estimates of p1,(·,·) for power and Bradley-Terry models for
2020 predictions.

3.3 Bracket generation experiments

This subsection uses the six generators in Table 2 to inde-
pendently generate R = 25 batches ofN = 50,000 bracket
pools for each of the seven most recent tournaments
(2013–2019). Themethodsdescribed inSection 2.4 are then
used to measure the strength of the bracket pools and
assess the performance of the six generators.

3.3.1 MCB with max score and ESPN count metrics

The generators are first compared using the MCB method
with the max score and ESPN count metrics with the stan-
dard 95% confidence level. Table 6 provides the average
max scores s̄max for each set of bracket pools. The highest
average in each year is in bold. Italicized entries indicate
the MCB method concluded the corresponding generator
was not the best for that year (i.e. its CI was strictly nega-
tive). TheMCBmethoddidnot produce any strictly positive
CIs, so no generator is conclusively the best (with respect
tomax score) for any given year. Furthermore, every gener-
ator except R64 attained the highest average max score in
at least 1 year (2 years each for B-T and E8), suggesting the
generators differ in meaningful ways. For 2014, the tour-
nament in which a 7-seed defeat an 8-seed in the NCG, the
MCBmethod eliminates all but the E8 andNCGgenerators,
suggesting these two may be particularly well-suited for
years with big upsets.

Table 7 presents the average ESPN counts n̄ESPN for
each set of bracket pools. The highest average ESPN count

Table 6:Max score sample averages and MCB results.

Year B-T R64 E8 F4A F4B NCG

2013 1553.6 1592.0 1598.8 1617.2 1592.4 1592.8
2014 1380.0 1381.2 1465.6 1383.2 1391.6 1464.4
2015 1678.0 1667.6 1663.6 1674.4 1672.8 1670.4
2016 1640.0 1626.0 1638.0 1626.4 1632.0 1630.4
2017 1684.4 1677.6 1696.8 1678.4 1687.6 1670.0
2018 1568.8 1566.4 1569.2 1578.8 1583.6 1570.0
2019 1699.2 1724.4 1719.6 1727.6 1724.8 1736.4

Table 7: ESPN count sample averages and MCB results.

Year B-T R64 E8 F4A F4B NCG

2013 0.20 0.84 1.16 1.32 0.88 0.84
2014 0.00 0.04 0.40 0.00 0.16 0.32
2015 0.04 0.00 0.00 0.00 0.00 0.00
2016 0.96 0.64 1.12 0.64 0.60 0.64
2017 1.92 1.64 2.36 2.12 2.36 1.40
2018 1.60 1.36 1.40 1.44 1.84 1.28
2019 0.20 0.60 0.48 0.80 0.76 0.84

Brought to you by | University of Illinois Urbana Champaign
Authenticated | iludden2@illinois.edu author's copy

Download Date | 1/22/20 3:06 PM



10 | I. G. Ludden et al.: Models for generating NCAA men’s basketball tournament bracket pools

for each year is in bold. Italicized entries indicate the MCB
method concluded the corresponding generator was not
the best for that year (i.e. its CI was strictly negative). The
MCB method did not produce any strictly positive CIs, so
no generator is conclusively the best (with respect to ESPN
count) for any given year. Furthermore, every generator
except R64 attained the highest average ESPN count in at
least 1 year, suggesting (as mentioned for the max score
metric) that the generators have different strengths and
weaknesses. Inparticular, theMCBmethod results for 2014
mirror those for themax scoremetric, with only the E8 and
NCG generators still in the running for best. Hence, the E8
and NCG generators seem to handle big upsets better than
the other four generators.

3.3.2 Comparison with pick favorite approach

The generators are also evaluated against the pick favorite
approach by computing p̄PF, the average proportion of
brackets scoring at least as well as the best of the pick
favorite pool, as defined in Section 2.4. Table 8 presents
these pick favorite proportions for each generator and
year. The largest p̄PF for each year is in bold. Inmost years,
the six generators achieve similar p̄PF values, with the
notable exception of B-T having amuch lower p̄PF than the
other generators for all years but 2015. In most years, the
NCG generator attains the highest p̄PF, though never by a
large margin.

For 2016, p̄PF ≈ 0.14 for every generator, suggesting
that roughly one in sevenof thebrackets generatedbyeach
generator scores at least as well as the best of the pick
favorite pool. Since the pick favorite pool contains eight
brackets, this suggests all six generators are better than
the pick favorite approach for predicting the 2016 tourna-
ment. For 2015, however, each generator has p̄PF ≈ 0.001,
so roughly one in 1000 of the brackets generated by each
generator beats the pick favorite pool. In the remaining
years, the proportions are roughly one in 24 (2013), one
in 12 (2014), one in 264 (2017), one in 30 (2018), and one
in 26 (2019). These proportions suggest the six generators

Table 8: Pick favorite proportion sample averages.

Year B-T R64 E8 F4A F4B NCG

2013 0.029 0.043 0.041 0.047 0.044 0.045
2014 0.070 0.078 0.085 0.080 0.083 0.090
2015 0.0013 0.00087 0.00075 0.00085 0.00092 0.00092
2016 0.129 0.145 0.134 0.141 0.151 0.146
2017 0.0033 0.0038 0.0036 0.0038 0.0041 0.0041
2018 0.032 0.034 0.028 0.033 0.035 0.036
2019 0.031 0.040 0.033 0.041 0.042 0.044

considered should only be used to generate large pools; if
a bracket challenge limits the number of submissions to
a small value such as ten, then the pick favorite approach
maybeabetter choice thananyoneof these six generators.
However, if a large number of submissions is allowed, then
these generators should be considered.

Further supporting these generators over the pick
favorite approach, the average max scores in Table 6 are
more consistent over the years than the sPF scores in
Table 3. This suggests these generators produce bracket
distributions with sufficient variance to capture diverse
sets of tournament outcomes, provided the pools are suf-
ficiently large, whereas the pick favorite approach only
performs well for a small set of tournament outcomes.

3.3.3 Additional comparisons with ESPN pool

The generated bracket pools are also compared to the
ESPN pool using ¯̂nESPN, the sample average of the scaled
ESPN counts n̂ESPN, given in Table 9. For 2016–2018, the
scaled counts for all six generators exceed 100, suggest-
ing the generators outperform the ESPN pool participants
in these years. For 2014 and 2015, however, many of the
scaled counts are zero and none exceed 100. In 2013 and
2019, the B-T generator has low scaled counts, but the
five generators based on the power model achieve scaled
counts over 100. These results suggest that seed num-
bers alone often provide sufficient information to produce
strong brackets.

While the primary goal of the generators is to pro-
duce bracket pools with high max scores, examining the
score distribution for a large sample provides an addi-
tional perspective on a generator’s performance. Figure 2
is a reproduction of the score distribution for a 112,000-
bracket sample from the ESPN Tournament Challenge in
2016 (Wright andWiens 2016). Note thatWright andWiens
(2016) uses the name “pick-the-seeds” for the pick favorite
approach and divides scores by 10. Figure 3 presents
the score distribution for 1,250,000 brackets (25 replica-
tions of 50,000) generated by the R64 generator for 2016,

Table 9: Scaled average ESPN counts ¯̂nESPN per generator per year.

Year B-T R64 E8 F4A F4B NCG

2013 32.6 136.92 189.08 215.16 143.44 136.92
2014 0 8.8 88 0 35.2 70.4
2015 9.28 0 0 0 0 0
2016 249.6 166.4 291.2 166.4 156 166.4
2017 721.92 616.64 887.36 797.12 887.36 526.4
2018 553.6 470.56 484.4 498.24 636.64 442.88
2019 68.8 206.4 165.12 275.2 261.44 288.96

Brought to you by | University of Illinois Urbana Champaign
Authenticated | iludden2@illinois.edu author's copy

Download Date | 1/22/20 3:06 PM



I. G. Ludden et al.: Models for generating NCAA men’s basketball tournament bracket pools | 11

0
0 10 20 30 40 50

All upsets

Villanova champion

Pick-the-seeds

60 70 80 90 100 110 120 130 140 150 160 170 180

500

C
o
u
n
t

Score

1000

1500

2000

2500

3000

3500

Figure 2: ESPN tournament challenge sample score distribution for 2016; reprinted with permission from Wright and Wiens (2016).
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Figure 3: R64 generator sample score distribution for 2016.

approximately ten times the size of the sample fromwhich
Figure 2 was created. The R64 generator’s distribution has
a lower mode than the ESPN distribution, but its upper
tail (above a score of 1000) contains a greater propor-
tion of brackets, suggesting the R64 generator is more
likely to generate high-scoring brackets than the general
public.

3.3.4 MLR100 vs. R64 at different pool sizes

Recall the MLR100 generator defined in Section 2.3, which
independently samples four region outcomes from the 100
most likely region outcomes, as estimated by the power
model, and applies the power model probabilities to ran-
domly choose winners in the last three games. Using the
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power model probability estimates for predicting the 2019
tournament, the 100most likely regionoutcomes all have a
1-, 2-, or 3-seedwinning the region. Furthermore, the 1-seed
always reaches the Elite Eight. Hence the MLR100 genera-
tor is not very robust; it will never allow a seed larger than
3 to advance to the last few rounds. In the last seven tour-
naments, 10 of 28 teams reaching the Final Four and 3 of 14
teams in the National Championship Game were seeded 4
or worse, so the inability of MLR100 to predict such seeds
is a severe limitation.

Table 10 reports the averagemax scores across R = 10
replications of generating brackets for the 2013–2019 tour-
naments with the MLR100 and R64 generators. Pool sizes
range from 10 to 50,000. The results vary greatly across
years. In 2014, for example, when a 7-seed defeated an 8-
seed in the NCG, the MLR100 generator scores very poorly.
(Recall that MLR100 never sends a 4+-seed to the F4.)
However, in 2019, MLR100 generates a higher averagemax
score than R64 for all pool sizes but 5000 and 50,000. Gen-
erally, MLR100 performs better for small pools, and R64
performs better for large pools. In most years, the advan-
tage changes around a pool size of 5000. These findings
align with the intuition that generator diversity should
scale with pool size to allow for appropriate exploration
of the search space.

Table 10: Average max scores of MLR100 (top) and R64 (bottom)
generators at different pool sizes.

Pool size 2013 2014 2015 2016 2017 2018 2019

10 1141 718 1310 1109 1272 1154 1305
1018 733 1119 1004 1194 962 1186

25 1164 738 1440 1253 1394 1253 1387
1187 731 1259 1136 1357 1145 1291

50 1152 756 1440 1406 1476 1221 1514
1209 774 1358 1240 1364 1255 1347

100 1173 773 1520 1443 1501 1393 1551
1249 813 1452 1290 1431 1266 1424

250 1188 789 1535 1501 1501 1389 1578
1353 1010 1520 1407 1502 1347 1504

500 1209 793 1543 1532 1550 1449 1601
1355 1033 1542 1456 1520 1398 1542

1000 1210 798 1562 1534 1548 1468 1642
1439 1168 1559 1472 1525 1448 1589

5000 1234 806 1588 1582 1578 1481 1674
1498 1264 1600 1565 1631 1562 1696

10,000 1241 813 1599 1598 1586 1499 1685
1521 1274 1644 1598 1622 1535 1671

50,000 1250 824 1614 1609 1599 1517 1708
1583 1413 1695 1635 1694 1601 1744

4 Conclusions
The NCAA Division I Men’s Basketball Tournament is an
annual single-elimination tournament which is the focus
of significant media and fan interest in the United States.
Predicting the games’ results is a popular activity which
has attracted the attention of academic researchers in
recent years. This paper reviews the proposed models
for predicting the results of the NCAA basketball tourna-
ment and introduces the power model, which estimates
the teams’ winning probabilities as a power function of
the teams’ seed numbers. The power model generalizes
the Bradley-Terry model and has round-dependent para-
meters, an important feature given the observed tendency
for relative seed strength to vary across rounds.

Brackets are generated by applying these estimates
to choose game outcomes round by round. The power
model is both simple and intuitive: the α-value for each
match-up in each round summarizes the performance of
the two seeds in the same round in all modern-era tour-
naments. The web-based implementation of the power
model, introduced as a continuing platform to present
research on a popular topic to a general audience, has
gathered widespread media and public attention.

Five bracket generators using the powermodel exploit
prior research findings on seed distributions to first select
the seeds in later rounds before applying the power
model to the remaining games. These five generators and
a Bradley-Terry-based generator are applied to generate
pools of brackets which are scored using the ESPN scor-
ing systemandassessed against the pick favorite approach
and ESPN Tournament Challenge Leaderboard.

Thegenerators are comparedusingHsu’sMCBmethod
applied to themax score andESPNcountmetrics. TheMCB
method is inconclusive for both metrics in most years, but
it does provide evidence that some generators are not the
best in some years.

Since at least one of the E8 and F4A generators attains
the highest or second-highest average max score in each
year, there is weak evidence supporting these generators
over the other four. The E8 and F4A models may perform
better because fixing the Final Four or Elite Eight seeds
splits the bracket, perhaps reducing the likelihood of error
propagation through the rounds, especially in contrast
to the B-T and R64 generators. However, none of the six
generators consistently outperformed the ESPN pool.

The six generators for the main experiments are
assessed by generating pools of 50,000 brackets. For small
pools, however, the MLR100 generator shows promise,
outperforming R64 in most of the last seven tournaments
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for sample sizes between 10and 1000. It seems theMLR100
generator offers a balance between the naïve pick favorite
approach and the high-variance generators derived from
Algorithm 1. Tuning the parameter T for the most-likely
regions approach could improve performance for specific
pool sizes.

Table 11 provides a qualitative summary of the bracket
generators discussed in this paper. Futurework could seek
to characterize the tournament conditions in which cer-
tain generators perform better or worse than others. If a
set of generators is found such that at least one generator
performs well for each year, then a hybrid pool containing
some brackets from each generator in the set may achieve
more consistent success for future tournaments.

The power model is naturally limited by the small size
of data sets for match-ups, especially in later rounds. To
address this problem, future work may consider using the
results of a seed in one match-up to estimate its winning
probability in other match-ups. For instance, a weighted
average of the α-values for the stronger seed in the round
may be used rather than the weighted average of all α-
values for the round. Moreover, estimating the α-values
by a weighted function of the tournament results might
improve the models, since more recent tournaments may
better represent the relative strength of seeds.

While generators based on the power model do not
always produce extremely strong brackets, they perform
surprisingly well given that the power model reduces each
team to its seed number and uses only this limited data
set. Also, the flexibility of the power model makes it a bet-
ter choice than the Bradley-Terry model, which is a spe-
cial case. McCrea and Hirt (2009) notes that probability
matching, which the power model effectively does in its
α-value estimation procedure, does not always lead to the
most effective results. It is reasonable to suppose there
exist optimal power model parameters which differ from
those produced by both the probability-matching proce-
dure and the Bradley-Terry model. Further work could
seek alternative estimation procedures in pursuit of these
optimal parameters.

Table 11: Summary of generators.

Generator Variance Ideal pool size Performance on metrics

Max score ESPN count

B-T High Large (>1000) Varies by year Varies by year
R64 High Large (>1000) Poor Fair
E8 Medium Large (>1000) Good Good
F4A Medium Large (>1000) Good Good
F4B Medium Large (>1000) Fair Good
NCG Medium Large (>1000) Fair Good
MLR100 Low Small (<1000) Varies by year Not measured
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A Appendices

A.1 Tournament round names

Table 12 lists the six main rounds of the tournament with
their various names.

A.2 Description of two-stage sampling
procedure

Each of the sampling functions SampleE8, SampleF4A,
SampleF4B, and SampleNCG incorporates a truncated
geometric distribution based on the results in Jacobson
et al. (2011). When directly fitting a truncated geometric

Table 12: The six main rounds of the NCAA division I men’s
basketball tournament (NCAA 2019).

Round No. of
teams

Oflcial NCAA name Colloquial name Abbrev.

1 64 First round Round of 64 R64
2 32 Second round Round of 32 R32
3 16 Regional semifinals Sweet Sixteen S16
4 8 Regional finals Elite Eight E8
5 4 National semifinals Final Four F4
6 2 Natl. championship – NCG

Table 13: Adjusted seeds for two-stage sampling procedures.

Sampling function Adjusted seed

SampleE8 (top) 1
SampleE8 (bottom) 11
SampleF4A 11
SampleF4B None
SampleNCG 8
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Table 14: Parameters for Bradley-Terry model.

Year β1 β2 β3 β4 β5 β6 β7 β8

2013 0.2228 0.1422 0.0960 0.0802 0.0723 0.0739 0.0568 0.0455
2014 0.2253 0.1362 0.0911 0.0890 0.0750 0.0686 0.0523 0.0488
2015 0.2231 0.1375 0.0889 0.0873 0.0705 0.0687 0.0558 0.0530
2016 0.2279 0.1369 0.0875 0.0857 0.0700 0.0669 0.0590 0.0544
2017 0.2233 0.1445 0.0879 0.0818 0.0670 0.0675 0.0624 0.0514
2018 0.2222 0.1443 0.0906 0.0806 0.0635 0.0681 0.0661 0.0513
2019 0.2237 0.1412 0.0931 0.0766 0.0616 0.0694 0.0657 0.0519
2020 0.2221 0.1417 0.0965 0.0769 0.0637 0.0686 0.0639 0.0496

Year β9 β10 β11 β12 β13 β14 β15 β16

2013 0.0401 0.0458 0.0446 0.0386 0.0196 0.0145 0.0070 0.0000
2014 0.0446 0.0419 0.0409 0.0418 0.0220 0.0140 0.0085 0.0000
2015 0.0461 0.0432 0.0424 0.0404 0.0208 0.0139 0.0084 0.0000
2016 0.0451 0.0437 0.0418 0.0386 0.0198 0.0145 0.0081 0.0000
2017 0.0436 0.0474 0.0432 0.0370 0.0190 0.0148 0.0093 0.0000
2018 0.0425 0.0484 0.0457 0.0348 0.0180 0.0148 0.0090 0.0000
2019 0.0452 0.0473 0.0489 0.0326 0.0177 0.0148 0.0086 0.0016
2020 0.0450 0.0470 0.0480 0.0344 0.0178 0.0148 0.0084 0.0015

distribution to the historical seed distribution, it is often
the case that one seed appears far more often historically
than a truncated geometric fit would predict. Hence before
each truncated geometric fit, the frequency of the most
overrepresented seed s is reduced from fs to f ′s. Table 13
lists which seeds are modified for each of the sampling
functions. The truncated geometric fit then underpredicts
the appearance of seed s, so a preliminary stage is added
to the sampling procedure in which seed s is chosen with
some constant probability ps and the truncated geomet-
ric distribution is sampled otherwise (with probability 1−
ps). The value of ps is chosen to match the total proba-
bility of sampling s to the historical proportion. Observe
that ps is fully determined by f ′s. Since fitting the trun-
cated geometric distribution is a deterministic process,
the entire two-stage sampling procedure is fully deter-
mined by f ′s. To obtain the best fit to the historical distri-
bution, f ′s is chosen to minimize the χ2 goodness-of-fit test
statistic for the samplingdistributionagainst thehistorical
distribution.

Defining the sampling functions in this manner offers
several advantages:
– Replicability – the parameters are entirely determined

by the historical distribution.
– Flexibility – the sampling functions for future years are

easily constructed.
– Goodness-of-fit – adjusting for the most overrepre-

sented seed yields a better fit than the truncated geo-
metric distribution alone.

A.3 Bradley-Terry model parameters

Table 14 presents the Bradley-Terry seed-strength para-
meter estimates for predicting game outcomes in the 2013
through 2020 tournaments. Recall from Section 2.1 that βi
is the strength parameter for seed i.
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