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Abstract: The NCAA basketball tournament attracts over
60 million people who fill out a bracket to try to predict
the outcome of every tournament game correctly. Predic-
tions are often made on the basis of instinct, statistics,
or a combination of the two. This paper proposes a tech-
nique to select round-of-64 upsets in the tournament us-
ing a Balance Optimization Subset Selection model. The
model determines which games feature match-ups that
are statistically most similar to the match-ups in historical
upsets. The technique is then applied to the tournament
in each of the 13 years from 2003 to 2015 in order to select
two games as potential upsets each year. Of the 26 selected
games, 10 (38.4%) were actual upsets, which is more than
twice asmanyas the expectednumber of correct selections
when using a weighted random selection method.

Keywords: basketball; optimization; predictive modeling.

1 Introduction
The men’s college basketball championship tournament,
henceforth referred to as the tournament, is held annually
by the National Collegiate Athletic Association (NCAA).
The tournament attracts a tremendous amount of atten-
tion nationally from the public and the media, which has
resulted in the event being commonly known as March
Madness. People all over the country engage in the tour-
nament both by supporting their favorite team and by at-
tempting to predict the outcome. Sites such as ESPN (2015)
and Yahoo (2015) host bracket competitions, where people
submit their predictions for the outcome of each game in
the tournament. In 2015 alone, people submitted approx-
imately 70 million brackets to various sites (Wartenberg
2015). Accurately predicting the outcome of games can
also be financially lucrative, with Americans wagering
approximately $9 billion in 2015 (Marino 2015). In 2014,
Quicken Loans partnered with Yahoo to offer $1 billion
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to anybody who could create a bracket with every game
predicted correctly (Yahoo 2014). Both the pride from be-
ing correct and financial opportunities have incentivized
many individuals and companies to develop models to
predict the outcomes of the tournament games.

The world of sports forecasting can be a daunting one
for those people not familiar with the sport and current
teams. Newcomers attempting to learn about the teams in
the tournament are faced with a copious amount of statis-
tics, team rankings, and expert opinions. To help users
create a bracket, news and sports sites such as ESPN and
Fivethirtyeight.com (FiveThirtyEight 2015)make their own
predictions publicly on how the tournament will proceed.
However, while they do disclose some components and
relationships that go into their predictive models, a large
portion of the models are proprietary. Even the revealed
portions of the models involve a multitude of factors that
are prohibitive for a newcomer to obtain and use. The
use of a few key statistics that are easy to acquire and
understandwould allow both experts and novices tomake
forecasts based on the same data.

This paper proposes a technique to select potential
upsets using only a small number of publicly available
statistics by identifying match-ups in the current year
that exhibit characteristics similar to those exhibited by
historical round-of-64 upsets. The differences in season
statistics between the two teams in each historical upset
are used to build a profile of past upsets, which is then
compared to first round games in the current year to find
match-ups that are most similar to historical upsets. By
limiting the potential characteristics to game statistics,
the technique can be back-tested to ascertain its accuracy.
Testing was done by generating predictions for each year
from 2003 to 2015 using only data that would have been
available at the time for each year. This technique is shown
to outperform both the random selection of upsets, as well
as the Kaggle competition-winning technique provided
by Lopez and Matthews (2015), and the results obtained
are reproducible using freely available information from
TeamRankings.com (TeamRankings 2015).

By examining historical upsets, our technique is able
to identify characteristics that allow aweaker team to beat
a stronger team, and then find games in a given year’s
tournament that exhibit those characteristics. Taking the
specific match-up in each game into account allows us
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to identify upsets with greater accuracy than weighted
random selection would allow.

This paper is organized as follows. Section 2 describes
current techniques for predicting the outcome of games.
Section 3 describes the method by which Balance Op-
timization Subset Selection is used to choose potential
upsets. Section 4 summarizes the results of the proposed
technique by providing the predictions made by the tech-
nique. Section 5 provides concluding remarks.

2 Background

2.1 Rating systems

Several team rating systems that quantify the skill of
teams have been introduced and popularized, including
ESPN’s basketball power index (BPI) (Oliver 2013), Ken
Pomeroy’s pythagorean ratings (Pomeroy 2012), and Jeff
Sagarin’s predictor ratings (Sagarin 2015). These rating
systems focus on assigning a numeric rating to each team
that estimates how successful that team will be in games.
The premise behind these systems is that a team with a
higher rating is stronger than a team with a lower rating,
where the difference between the rating of the two teams
indicates the difference between the strength of the teams.

The basketball power index (BPI) was introduced in
2013 by ESPN and touted as “a little more refined than
any other existing power ranking.”(Oliver 2013) While the
exact formula for calculating a team’sBPI is not reported in
the literature, ESPNdoes reveal someof the components of
the ranking. The BPI includes such information as a team
missing an important player during a game, whether the
game is home or away, whether the game was a blowout
or a close game (Oliver 2013), the pace of the game, and
the strength of a team’s schedule (how strong a team’s
opponents were) (Volner 2013).

Ken Pomeroy, owner and operator of kenpom.com,
scores teams based on a pythagorean winning percentage
(Pomeroy 2012), which is the expected fraction of games a
team shouldwin against an average team. To calculate this
percentage, he uses the adjusted offensive efficiency (AdjO)
and adjusted defensive efficiency (AdjD) of a team. The ad-
justed offensive efficiency is an estimate of the number of
points a particular team would score per 100 possessions
against an average team (as assessed by Pomeroy). The
adjusted defensive efficiency is an estimate of the points
allowed per 100 possessions by a team against an average
team. The method of computing these adjusted values
is not reported in the literature. The adjusted offensive

efficiency and adjusted defensive efficiency are then com-
bined into the pythagorean winning percentage using the
formula

pyth =
AdjO10.25

AdjO10.25 + AdjD10.25 . (1)

These ratings systems are used to determine the outcome
of games. In amatch-up between two teams, the teamwith
the higher rating is predicted to have a higher likelihood
of winning a game. The magnitude of the difference in the
ratings is also used to determine how likely each team is to
win. For example, Fivethirtyeight.com combines seven dif-
ferent ratings to predict the likelihood of one team beating
another (Silver 2015).

2.2 Match-up analysis

An alternative to predicting game outcomes by comparing
the rating of two teams is to compare the two teams in a
match-up directly.

The tournament is divided into four regions, and each
team in the tournament is given a seed, which is an es-
timate of the rank of a team in their respective region of
the bracket determined by the selection committee prior
to the tournament. The team deemed by the committee to
be the strongest in each region is given a seed of 1 and the
team deemed to be the weakest in each region is given a
seed of 16. We define a team with a small numeric seed as
having a high seed and teams with a large numeric seed
as having a low seed. Therefore, a team with seed one is
the highest seeded team in its region and a teamwith seed
16 is the lowest seeded team in its region. The games of
interest to this paper are upsets, which are games inwhich
a low seeded team beats a high seeded team. Upsets are
defined by ESPN as games where the difference between
the seed of the winning team and the seed of the losing
team is at least five (Keating 2013). ESPN looks for potential
upsets by looking for teams that are stronger than their
seed would suggest or by finding match-ups where the
weaker seeded team has a strength that could exploit the
weakness of a stronger team (Brenner and Keating 2015).
ESPN defines four categories of high seed teams that are
capable of losing (Brenner and Keating 2015):
– Power giants: Strong offensive rebounding, average

defensive rebounding, do not force many turnovers
– Gambling giants: Strong offensive rebounding, weak

defensive rebounding, force many turnovers
– Pack-line giants: Average offensive rebounding, donot

force many turnovers, good defensive rebounding
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– Generic giants: Generally skilled, not specifically
strong in offensive rebounding or generating
turnovers

ESPN also defines four categories of low seed teams that
have the potential to upset (Brenner and Keating 2015):
– Generic killers: Decent teams with no especially

strong rebounding, turnovers, shooting, or defense
– Slow killers: Strong offensive rebounding, limit op-

ponent shooting, neither generate steals nor shoot
3-point shots

– Perimeter killers: Strong 3-point shooters, generate
lots of steals, weak offensive rebounding, weak at
limiting opponent shooting

– High-possession killers: Limit opponent shot accu-
racy, strong offensive rebounding, do not shoot many
3-point shots

These categories are then analyzed to see which Giants
(high seed teams) could fall towhichGiant killers (lowseed
teams). ESPN’s conclusions are shown in Figure 1, where
an arrow fromaGiant to aGiant killermeans that theGiant
is weak against that Giant killer and an arrow from a Giant
killer to aGiantmeans that theGiant killer is strongagainst
that Giant.

ESPN does not elaborate on exactly how each team is
placed into any of the above categories.

There has also been research into quantitatively pre-
dicting the probability of one team winning against an-
other. Kaggle (2015), awebsite that hosts data science com-
petitions, ran a college basketball tournament prediction
contest in 2014 and 2015. In Kaggle’s competition, partici-
pants were asked to compute the probability of each team
beating each other team in the tournament, but were only
scored on those matches that actually occurred. Because
there are 68 teams in the tournament (including the play-
in matches), participants made probabilistic predictions

Power giants

Gambling giants

Pack-line giants

Generic giants

Generic killers

Slow killers

Perimeter killers

High-possession killers

Giants Giant killers

Figure 1:Which Giants might lose to which Giant killers and which
Giant killers might win against which Giants.

for each of the 2278 potential team pairings that could oc-
cur. Each match was weighted equally, unlike traditional
bracket scoringwhere predicting thewinner of the tourna-
ment is worth several times as many points as predicting
the outcomeof a round-of-64match. The advantageofKag-
gle’s system is that it made predicting round-of-64 upsets
correctly more advantageous than a traditional bracket
where the later rounds are much more important due to
later rounds typically beingworthmore points. The Kaggle
competitionwinners (Lopez andMatthews 2015) used a lo-
gistic regression model incorporating the Las Vegas point
spread (the expectedmarginof eachgame) givenbyCovers
(Covers 2015) and Ken Pomeroy’s efficiency ratings.

The downside to the existing methodologies for pre-
dicting the outcome of a game is that they are difficult to
replicate due to their opaquenature. Themethod for calcu-
lating the Las Vegas point spread is not publicly available,
andneither is the exact formula for ESPN’sBPI. Also,while
using factors such as strength of schedule seems useful,
it introduces its own biases because it is not an objective
statistic, but rather relies on people to determine the rel-
ative strengths of teams who have never played against
each other. ESPN outlines qualities of Giants that may fall
and the Giant Killers that may upset them, but does not
elaborate on the methods used to identify these teams.
This paper aims to provide an approach to predicting up-
sets that uses only statistics that can be obtained from
watching the games, and also self-identifies the important
factors in predicting upsets without user intervention.

3 Methodology
In this paper, we define an upset as a team seeded 13,
14, or 15 winning a game in the round-of-64 (compared
to ESPN’s 11 or higher). A k-seed game refers to a game in
which one of the teams has seed k. We exclude 16-seeded
teams because no 16-seed has ever won a round-of-64
game. This allows the focus to be placed on identifying
characteristics of a much smaller number of upsets than
if 11 and 12 seeded teams were included. Between 1985
and 2015, 52 of the 372 games played involving 13–15 seeds
have beenupsets. This is an average of 1.67 upsets per year.
Therefore, we aimed to identify two match-ups each year
that are similar to past historical upsets. All raw data was
obtained from TeamRankings.com (TeamRankings 2015)
and are obtained as of Selection Sunday for each year (so
no tournament game statistics are included in the data).
The proposed technique can be described as a series of
four steps.
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1. Computing match-up statistics: Compare the two
teams playing in each game using team statistics.

2. Identifying useful match-up statistics: Use an extra-
trees classifier to select a set of match-up statistics 𝒮
that are strong indicators of historical performance.

3. Finding similar match-ups: For each subset of match-
up statistics S ⊆ 𝒮 with |S| = 4, use Balance Opti-
mization Subset Selection to identify three match-ups
that are similar to historical upsets on the match-up
statistics in S.

4. Combining models: Identify combinations of match-
up statistics S ∈

(︀𝒮
4
)︀
that performed well historically

and use them to select two match-ups as potential
upsets.

The following subsections will elaborate on each of the
four listed steps.

3.1 Computing match-up statistics

Because both players and play styles in college basketball
can change from year to year, we use ordinal rankings in-
stead of the raw statistic valuewhen looking at team statis-
tics. For example, instead of using 58.4% as Notre Dame’s
Two Point Percentage in 2015, we use the fact that it was
the highest Two Point Percentage of any team in 2015, and
assign it a value of 1. Gonzaga, having the 2nd highest Two
Point Percentage in 2015, would be assigned a value of 2
for that statistic. Relative ranking allows teams from dif-
ferent years to be compared while accounting for the way
that the league as a whole may change. Relative rankings
also have the advantage of forcing the range of values for
each statistic to be the same (1 to the number of teams
barring ties). In the event that multiple teams have the
same value for a statistic, they are assigned a rank that
is the average of the ranks of that value. For example, if
three teams shared the third highest value for a statistic,
the three teamswould all be assigned (3+ 4+ 5)/3 = 4 for
that statistic. The teamwith the next highest value for that
statistic would be assigned a rank of 6.

Rather than looking at a team’s statistics, it is more
useful to look at how a team’s statistics compare to those
of its opponent. One team averaging a very high number of
steals may signal a high number of scoring opportunities,
but if the opponent team averages a similar number of
steals, neither team is likely to gain an advantage over
each other by relying solely on steals. To find the differ-
ences between the teams, we subtract the ordinal ranking
of each statistic for the higher-seeded team from those
of the lower-seeded team for each game. Comparing the

teams in the match-up reveals gaps in the statistics of the
teams, such as if one team shoots many more three point
shots or one team forces many more turnovers than the
other. These match-up statistics, rather than team statis-
tics, are then used to find potential upsets. By observing
which statistics have gaps that lead to upsets in historical
games, games in the future can be identified as having the
potential for being an upset.

3.2 Identifying useful match-up statistics

TeamRankings.com (TeamRankings 2015) tracks 115 differ-
ent statistics for each team going back to the 1997-1998
season. The first step is to find a small set of statistics that
are correlated with upsets. Trying every combination of
statistics is infeasible, as there are 2115−1 possible com-
binations. To find a subset of statistics that are useful for
selectingpotential upsets, an extra-trees classifier (Geurts,
Ernst, and Wehenkel 2006) was trained on round-of-64
tournament matches from 1998 to 2015, where the classi-
fier was built using all 115 match-up statistics. An extra-
trees classifier builds a large number of decision trees that,
in our case, use the various match-up statistics to differ-
entiate upsets from non-upsets. The extra-trees classifier
was chosen for its resistance to overfitting (Geurts et al.
2006) and because it allows us to measure the importance
of each feature for the purposes of classification. The re-
sistance to overfitting is due to the nature of the classifier,
which trains each tree on a random subset of the data
using a random subset of input features. Because each
training example and feature is excluded in many of the
trees, the classifier avoids learning to overfit the training
set provided a sufficiently large number of trees.

The classifier was built using 100,000 decision trees
with

√
115 features sampled for each split and two sam-

ples required to split each node (as suggested in Geurts
et al. (2006)). The importance of each feature can then
be extracted from the classifier using Gini Importance
(Breiman et al. 1984). The implementation used for both
the classifier and feature importance was the extra-trees
classifier in Python’s scikit-learn library. Based on prelim-
inary experiments testing different numbers of match-up
statisticswith subsequent steps of the technique,we opted
to use the resulting 15 most important features for identi-
fying upsets. These features were (in descending order of
Gini Importance):
1. Effective Possession Ratio
2. Games Played
3. Extra Scoring Chances per Game
4. Opponent Floor Percentage
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5. Personal Fouls per Possession
6. Opponent Steals per Defensive Play
7. Assist / Turnover Ratio
8. Personal Fouls per Defensive Play
9. Opponent Steals per Possession
10. Opponent Average Scoring Margin
11. Average Scoring Margin
12. Opponent Three Point Percentage
13. Steals per Defensive Play
14. Steals per Possession
15. Average 2nd Half Margin

These statistics are defined in Appendix A. Let 𝒮 be the
set of thesematch-up statistics. It should be noted that the
extra-trees classifier was trained using games from 1998 to
2015 rather than training the classifier to identify features
for each year separately. The decision to train the extra-
trees classifier on games from 1998 to 2015 instead of only
on games from 1998 to the year for which upsets were
being identified was made due to the limited quantity of
available historical data.

Finding a suitable set of statistics to use could have
also been done by enumeration and validation, but the
classifier was used to avoid enumerating 2115−1 different
potential combinations of statistics. None of the decision
trees generated by the extra-trees classifier are being used
in any way to select potential upsets.

3.3 Finding similar games

The next step of the technique is to use the set of 15 match-
up statistics 𝒮 to select potential upsets. The Balance Op-
timization Subset Selection (BOSS) framework (Nikolaev
et al. 2013) is used to do the selection. BOSS is a frame-
work that allows the selection of a small control group
from a larger control pool that is similar to a treatment
group, where similarity is determined by a defined balance
measure.

The BOSS framework was originally designed as a
framework for conducting observational studies. In an
observational study, one has access to a set of units that
were exposed to treatment along with a set of units that
were not (the controls) and the goal is to estimate the effect
of the treatment. A significant difficulty is that exposure
to treatment is almost always non-random, which makes
it difficult to determine if estimated effects are due to the
treatment itself or other confounding factors called covari-
ates. The traditional approach to resolve this difficulty is
to use matching methods (Rubin 1973, 1980), which pair
each treatment unit with a control unit that possesses

similar covariate values. As the number of covariates in-
creases, finding exact matches becomes more difficult.
Propensity score methods (Rosenbaum and Rubin 1983)
are one potential solution to this problem, but they still
require the propensity score (a scalar value representing
likelihoodof treatment) to be estimated inorder to beused.
When matching methods fail to achieve exact matches,
it becomes difficult to determine which set of matched
pairs is best. A commonly accepted practice is to select
the set of matched pairs that features the best level of
covariate balance, which is typically a measure of aggre-
gate similarity (e.g., difference of covariate means, two-
sample Kolmogorov-Smirnov tests applied to the covari-
ates’ marginal distributions) between the treatment units
and the matched controls (Diamond and Sekhon 2013;
Rosenbaum and Rubin 1985).

Whereas matching methods typically match first and
then assess covariate balance afterwards, the BOSS frame-
work drops the matching component in favor of directly
optimizing covariate balance. That is, BOSS is designed
to identify a control group that possesses optimal balance
with respect to the treatment group, without requiring the
construction of matched pairs. While BOSS can be used to
optimize any measure of covariate balance, typical mea-
sures focus on themarginal distributions of the covariates.
This is because balance on the marginal distributions of
the covariates is a relaxation of the requirement for exactly
matched pairs, and as such is more likely to be achiev-
able, particularly when faced with limited data (Sauppe,
Jacobson, and Sewell 2014).

For selecting potential upsets, the control pool con-
sisted of the 13, 14, and 15-seed round-of-64 games and
the treatment group consisted of historical upsets. The
control group selected by BOSS would be the set of match-
ups most similar to the historical upsets according to
the defined balance measure. For each combination of
four match-up statistics S ⊂ 𝒮, BOSS is used to select
three match-ups as potential upsets. These will then be
narrowed to two final selections in the next step of the
technique.

BOSS requires a balance measure by which games in
the current year can be compared to upsets in the past
to measure the similarity between the control group and
the treatment group. The balance measure used was a
combination of (1) the difference between the empirical
distribution of the treatment and control group for each
statistic i ∈ S and (2) the relative difference between the
sum of each statistic for each game in the control and
treatment group. The difference between the empirical dis-
tributions was measured using the Kolmogorov-Smirnov
(KS) test statistic, which defines the distance K between
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two sets f 1 and f 2 with empirical distributions F1 and F2
respectively over a set of values V as

K(f1, f2, V) ≡ max
v∈V

|F1(v) − F2(v)|. (2)

TheKolmogorov-Smirnov statisticmeasures themaximum
vertical distance between two empirical distributions.

Because the KS statistic only measures the difference
in the height of the empirical distributions, it is possible
for the first and last values in the empirical distribution
to be significantly further apart on one distribution than
the other while retaining the same KS statistic value. For
example, the KS statistic between {1, 2, 3, 4} and {1, 2, 3, 5}
would be the same as the KS statistic between {1, 2, 3, 4}
and {1, 2, 3, 1000}. In order to prevent that last value from
being very far away from the rest of the distribution, we
alsouse the relative differencebetween thedistributions to
include thehorizontal differencebetween the two sets. The
relative difference constraints force the horizontal spread
to be similar in both distributions.

The relative difference R between the sum of the sets
f 1 and f 2 is defined as:

R(f1, f2) ≡
| 1

|f1|
∑︀

g∈f1 g − 1
|f2|

∑︀
g∈f2 g|

1
|f2|

∑︀
g∈f2 g

. (3)

The covariates in this problem are the different match-
up statistics being used. Let the following terms be
defined as:
– T: Treatment Group
– C: Control Pool
– G: Control Group
– X: Set of covariates
– Si: Values of set S for covariate i
– Vi: Set of unique values in T ∪ C for covariate i ∈ X

We then set our balance measureM(G) for control group G
to be

M(G) =
∑︁
x∈X

max{K(Ti , Gi), R(Ti , Gi)}. (4)

We then find group G with size |G| = 3 such that M(G) is
minimized. The three teams in G will be the three selec-
tions for the set of covariatesS. Due to the small size of both
T and C, we solved BOSS by enumerating all possible sets
of G and choosing the one with the smallest M(G). BOSS
can also be solved via a Mixed Integer Program (MIP), the
formulation for which is presented in the appendix.

BOSS was run once for each combinations of four
statistics out of the 15 chosen by the classifier (1365 com-
binations total) on years from 2001–2015 using each com-
bination of statistics as covariates. The earliest year used

was 2001 because detailed data for years prior to the 1997–
1998 season were unavailable from TeamRankings.com
and forming a treatment group requires historical upsets,
so some years would have to be used to build a small
treatment group. The upsets in years from 1998 to 2000
were used to form the treatment group for 2001.

3.4 Combining models

Solving BOSS with each S ∈ 𝒮 produced 1365 sets of three
match-ups each (one set of three match-ups from each
combination of fourmatch-up statistics).In order to finally
select two match-ups as potential upsets, the results of
those 1365 BOSS solutions must be combined to yield
two match-ups. In order to do this, a reasonable action
is to take the two match-ups that appear most frequently
across the set of BOSS solutions. However, not all combi-
nations of match-up statistics are equally informative or
valuable. Therefore, only those combinations of match-
up statistics that proved to provide accurate solutions
historically were included. The subset of combinations to
use was chosen by evaluating the performance of each
combination of match-up statistics using historical data
and selecting the oneswith the best past performance. The
performance of a given combination ofmatch-up statistics
was measured as the number of upsets that BOSS selected
correctly over the entire range of years used when the
given combination was used as covariates. To formalize
this, let nS, y be the number of upsets in year y that were
included in the BOSS solution when optimizing over the
match-up statistics S (so nS,y ∈ {0, 1, 2, 3}). Then let NS,y =∑︀

y′<y nS,y′ be the historical performance of S in predicting
upsets up through but not including year y. For any given
year y, let N*y = maxS⊆𝒮 NS,y be the largest number of se-
lected upsets across all match-up statistics. Then let Py ={︁
S ∈

(︀𝒮
4
)︀
: NS,y ≥ N*y − τ

}︁
be the set of high-performing

match-up statistics in year y, where τ is a tolerance param-
eter. The statistics in Py are then used to select upsets for
year y. The tolerance value τ was determined by testing
values between one and 20 and choosing the value that
yielded the most correct selections, where a correct selec-
tion is the selection of a game that was an actual upset.
The value of τ was determined separately for each year.

The steps to select two teams for year Y from the
results of BOSS are as follows:

1. Find the number of correct selections made by BOSS
for each combination of four match-up statistics
S ∈

(︀𝒮
4
)︀
from year 2001 to year Y−2. Let the number

of correct selections for S be NS, Y−2.
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2. Find the single combination of four match-up statis-
tics for which BOSS made the most correct selections
when run from year 2001 to year Y−2. Let this be
N*Y−2.

3. Set τ to one. Find all combinations of match-up statis-
tics for which BOSS selected at least as many upsets
correctly as the number correctly selected by the best
combination found in the previous step minus the
tolerance value (N*Y−2 − τ) for years 2001 to Y−2. Let
PY−1 be the set of the selected combinations.

4. Use the two teams most frequently selected by BOSS
for year Y−1 when run on each combination ofmatch-
up statistics in PY−1 as the two selections for year
Y−1.

5. Repeat steps (1)–(3) for each τ between one and 20.
Select the value of τ that resulted in the most correct
selections for year Y−1.

6. Use the value of τ found in step (4) to make selections
for year Y using steps (1)–(3) but iterating to year Y−1
instead of Y−2 in step 2.

Algorithm 1 provides the pseudo-code for selecting the
subset of combinations of match-up statistics to use and
combining the teams chosen using each combination in
that subset into the two selected games for a target year
Y where Y is a year after 2002. Lines 3–12 iterate through
each year prior to Y and determine the number of cor-
rect selections that are made for each potential tolerance
value. Lines 5–8 find the number of correct selections
made using each combination of match-up statistics by
comparing the games selected by BOSS using that combi-
nation ofmatch-up statistics to the actual historical upsets
that occurred. The combinations that performed within
the tolerance of the best single combination are used to
generate the final two selections. The final selections are
the two match-ups that are most selected by the chosen
combinations. The tolerance value that results in the most
accurate selections for years between years 2002 and Y−1
is then used to select two games as potential upsets for
year Y in lines 14–20. If multiple tolerance values gener-
ated the same number of correct selections, the maximum
of those tolerance values was used. In the event that there
was a tie for the most frequently occurring team or the
second most frequently occurring team, more than two
teamswould have been selected. However, such a tie never
occurred, so this contingency was never used.

Combining the results of multiple models or instances
of a model, known as ensembling, has been shown to fre-
quently reduce errors due to a specific failing in individual
models (Opitz and Maclin 1999). Due to the small size of
the dataset, one specific set of covariates may be high

Algorithm 1 Generating selections for year Y using BOSS
1: S ← {all S ⊂ 𝒮 : |S| = 4}
2: for τ ∈ {1, 2, ..., 20} do
3: gτ ← {}
4: for year y ∈ {2002, 2003, ..., Y − 1} do
5: for each s ∈ S do
6: Ns,y ← number correct selections by s using

BOSS for years {2001, .., y − 1}
7: end for
8: N*y ← max

s∈S
{Ns,y}

9: Py ← {s ∈ S : Ns,y > N*y − τ}
10: gτ = gτ ∪ {the two games most frequently

selected by all s ∈ Py using BOSS
for year y}

11: end for
12: end for
13: τopt ← τ such that gτ contains the most correct upsets

for years {2002,. . . ,Y−1}
14: for each s ∈ S do
15: Ns,Y ← number correct selections by s using BOSS

for years {2001, . . . , Y − 1}
16: end for
17: N*Y ← max

s∈S
{Ns,Y}

18: PY ← {s ∈ S : Ns,Y > N*Y − τopt}
19: return the two games most frequently selected by all

s ∈ PY using BOSS for year Y

performing, but a high performance by a single covariate
combination may be due to coincidence because the out-
come of each game is essentially a random variable. En-
sembling multiple models or instances of a model should
make the resultant ensemble more resistant to overfitting
the dataset, but determining the amount of overfitting is
difficult due to the limited number of years for which there
is historical team data.

4 Results
The technique presented in Section 3 was used to select
two potential upsets per year for years between 2003 and
2015. The games selected as upsets are listed in Table 1.
The number of upsets that occurred each year is shown in
Table 2. Table 3 lists the selection frequency and accuracy
for each seed separately.

In total, the presented technique selected 10 upsets
correctly out of 26 picks (38.4%) over 13 years.

Analysis of the results lead to several observations
about the tendencies of the technique. We selected two
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Table 1: Games selected.

Year Game seed Winning team Losing team Upset selected
correctly

2015 14 Georgia St Baylor True
2015 14 UAB Iowa State True
2014 13 San Diego St N Mex State False
2014 13 Michigan St Delaware False
2013 14 Marquette Davidson False
2013 13 La Salle Kansas St True
2012 14 Georgetown Belmont False
2012 15 Lehigh Duke True
2011 15 N Carolina LIU-Brooklyn False
2011 15 Notre Dame Akron False
2010 14 Ohio Georgetown True
2010 15 W Virginia Morgan St False
2009 13 Xavier Portland St False
2009 13 Cleveland St Wake Forest True
2008 13 Siena Vanderbilt True
2008 13 Pittsburgh Oral Roberts False
2007 13 S Illinois Holy Cross False
2007 13 Virginia Albany False
2006 14 Gonzaga Xavier False
2006 13 Bradley Kansas True
2005 14 Oklahoma Niagara False
2005 13 Vermont Syracuse True
2004 13 Maryland TX El Paso False
2004 13 Kansas IL-Chicago False
2003 13 Tulsa Dayton True
2003 14 Xavier Troy False

Shaded rows indicate games selected correctly.

Table 2: Number of upsets per year.

Year Number of actual upsets Number selected correctly

2015 2 2
2014 1 0
2013 3 1
2012 3 1
2011 1 0
2010 2 1
2009 1 1
2008 2 1
2007 0 0
2006 2 1
2005 2 1
2004 0 0
2003 1 1

upsets correctly one time, one upset correctly eight times,
and zero upsets correctly four times. However, out of the
4 years where we got zero correct, 2 years had zero upsets
actually occur. Therefore, we selected at least one upset
correctly in nine out of the 11 years that had at least one
upset occur. Moreover, given that we choose exactly two
potential upsets per year, we can observe from the histor-
ical record that the maximum number of upsets that we

Table 3: Selection accuracy by seed.

Seed Number of actual
upsets

Number selected Number selected
correctly

13 10 14 6
14 7 8 3
15 3 4 1
Total 20 26 10

could have chosen correctly is 18. Therefore, we selected
10 out of the 18 possible upsets thatwe could have selected
correctly. The games chosen also tend to favor stronger
seeds, as we pick a 13-seed fourteen times, a 14-seed eight
times, and a 15-seed four times. Selecting higher-seed
teams with higher frequency is reasonable because the
13-seeds are more likely to win than the 15-seeds.

Another interesting observation is that the tolerance
value determined when using Algorithm 1 for each year
remained constant for all years from 2009 onward. A con-
stant tolerance could be evidence of some level of stability,
because the fact that it stayed constant for seven consecu-
tive years suggests that is likely to be the correct value to
use in future years. However, due to the limited number of
years of data available, the value for further years should
be determined using the algorithm until this theory can be
further tested.

To assess the variability of our technique, letXi denote
the number of correctly predicted upsets in the ith year of
analysis (i.e., year 1 is 2003, year 2 is 2004, and soon). Then
we have

X̄ =
1
13

13∑︁
i=1

Xi =
10
13 ≈ 0.769 (5)

and

S2 =
1

13 − 1

(︃ 13∑︁
i=1

X2i − 13 · X̄2
)︃
≈ 0.359, (6)

so the sample standard deviation for number of correct
selections per year is approximately 0.599. Assuming that
the Xi are independent, the variance in the number of
correct selections across all 13 years is approximately
4.667, with a standard deviation of 2.16.

To compare the performance of our technique to pre-
dictions made by randomly choosing games, we deter-
mined the expected number of correct selections when
two teams were randomly selected as predicted upsets.
We can either randomly select two teams each year with
equal probability or, because we know the historical fre-
quency of each seed winning a round-of-64 game, we can
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randomly select two possible upsets each year using the
historical frequency of an upset occurring for each seed
as weights. The weights used for weighted random selec-
tion each year were calculated using upsets that occurred
prior to that year. For example, when randomly selecting
teams as predictions for 2010, the frequency of upsets
from 1985 to 2009 was used for weighting. Each game
was then determined to be an upset by modeling it as a
Bernoulli variable with the probability being the fraction
of historical games of that seed match-up that resulted in
upsets. The following proposition establishes the number
of upsets that would be correctly predicted through (1)
random selection where each team has the same probabil-
ity of being selected and (2) random selection where the
probability of each team being selected is weighted based
on the historical frequency of that team’s seed resulting in
an upset.

In order to compute the expected value and variance,
let the following terms be defined:
– Uy: Random variable representing the number of up-

sets selected correctly in year y
– xsy: Number of games that seed s has won before

year y
– Gs, y: Number of round-of-64 games played by s-seed

teams before year y
– ny: Total number of upsets that occurred prior to

year y.

The variables are dependent on the year y because the
weighted probabilities used each year are computed by
using the frequency of upsets occurring before that year.
Therefore, these probabilities change each year as new
upsets occur each year of the tournament.

Proposition 1. When choosing two 13, 14, or 15-seeded
match-ups as upsets randomly for each year between y1
and y2 where the probability of choosing each team is the
historical frequency with which upsets occur for that seed,
the expected number of upsets selected correctly is

E[U[y1 ,y2]] =
∑︁

y∈[y1 ,y2]

(︂
4

(︂
xsy
4ny

+
3xsy
4ny

xsy
4ny − xsy

)︂

+ 4
∑︁

i∈{13,14,15}:i /=s

xiy
4ny

xsy
4ny − xiy

)︂ (︂
xsy
Gy

)︂
,

(7)

and the variance is

Var[U[y1 ,y2]] =
∑︁

y∈[y1 ,y2]

(︂
4

(︂
xsy
4ny

+
3xsy
4ny

xsy
4ny − xsy

)︂

+ 4
∑︁

i∈{13,14,15}:i /=s

xiy
4ny

xsy
4ny − xiy

)︂ (︂
xsy
Gy

)︂

+ 8

⎛⎝ ∑︁
si=sj

xsiy
4ny

3xsiy
4ny − xsiy

(︂
xi
Gy

)︂2

+
∑︁
si /=sj

xsiy
4ny

4xsjy
4ny − xsiy

xixj
G2
y

⎞⎠ . (8)

Proof. The following equations will compute the expected
value and variance when using weighted random selec-
tion. A modification to use uniform random selection is
provided at the end of the proof.

The probability of randomly selecting a specific team
with seed s is

P(selecting team with seed s) = P(choose team first)
+ P(not choose first and

choose second)
(9)

Because there are four teams with each seed, this proba-
bility is multiplied by four. Also, the probability depends
on year y. Therefore,

P(selecting team with seed s in year y)

= 4
(︂
xsy
4ny

+
3xsy
4ny

xsy
4ny − xsy

)︂
+ 4

∑︁
i∈{13,14,15}:i /=s

xiy
4ny

xsy
4ny − xiy

. (10)

The probability of the selected team being an actual upset
is

P(seed s correct in year y) =
xsy
Gy

. (11)

Therefore for each year, the expected number of correctly
predicted upsets is

E[Uy] =
∑︁

s∈{13,14,15}

P(selecting team with seed s in year y)

* P(seed s correct in year y)
(12)

Because the results of each year are independent, as up-
sets occurring one year do not depend on upsets occurring
in the previous years, we can add the expected number of
upsets each year to arrive at the expectednumber of upsets
over a range of years. When xs, n, and G are determined
by historical data prior to each year, we find the expected
number of upsets from y1 to y2 (including y2) to be

E[U[y1 ,y2]] =
∑︁

y∈[y1 ,y2]

E[Uy]. (13)
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To compute the variance, we can rewrite the expected
number of upsets as

E[Uy] = P(Uy = 1) + 2P(Uy = 2). (14)

To compute the variance, E[Uy]2 is required.

E[Uy]2 = 12 * P(Uy = 1) + 22 * P(Uy = 2)
= E[Uy] + 2P(Uy = 2) (15)

To find P(Uy = 2), we let (si, sj) be all possible seed pairs
where i and j are each drawn from {13, 14, 15} with replace-
ment . Then

P(Uy = 2) =4

⎛⎝ ∑︁
si=sj

xsiy
4ny

3xsiy
4ny − xsiy

(︂
xi
Gy

)︂2

+
∑︁
si /=sj

xsiy
4ny

4xsjy
4ny − xsiy

xixj
G2
y

⎞⎠ . (16)

This allows us to express the variance as

Var[Uy] = E[Uy] + 8

⎛⎝ ∑︁
si=sj

xsiy
4ny

3xsiy
4ny − xsiy

(︂
xi
Gy

)︂2

+
∑︁
si /=sj

xsiy
4ny

4xsjy
4ny − xsiy

xixj
G2
y

⎞⎠ . (17)

Because the result of each year is independent, we can say
that

Var[U[y1 ,y2]] =
∑︁

y∈[y1 ,y2]

Var[Uy]. (18)

The above equations express the expected number and
variance of correct selections when using weighted ran-
dom selection. In order to compute the expected num-
ber and variance of correct selections when each seed is
equally likely to be chosen, modify (10) to be

P(select team with seed s in year y) = 4
(︂

1
12 +

11
12

1
11

)︂
=

8
12 ,

(19)

and (16) to be

P(Uy = 2) =
∑︁
si=sj

4
12

3
11

(︂
xi
Gy

)︂2
+

∑︁
si /=sj

4
12

4
11

xixj
G2
y
. (20)

with the other equations suitably modified because we
want each seed to be chosenwith probability 1/3 instead of
having them depend on the historical frequency of upsets
by each seed.

Table 4: Number of randomly selected upsets correctly chosen.

Year Expected number upsets selected correctly Variance

2015 0.331 0.276
2014 0.337 0.280
2013 0.335 0.278
2012 0.343 0.284
2011 0.344 0.285
2010 0.339 0.281
2009 0.341 0.282
2008 0.330 0.276
2007 0.345 0.286
2006 0.340 0.281
2005 0.333 0.277
2004 0.35 0.289
2003 0.354 0.291

By using available historical data and uniform random
selection and the result from the proposition, the expected
number of upsets to be chosen correctly when two upsets
are selected per year between 2003 and 2015 is 3.26 with
a variance of 2.93. These values change to 4.42 and 3.66,
respectively, when using weighted random selection. The
year-by-year expected value and variance for weighted
random selection can be found in Table 4.

Our technique selected 10 upsets over the 13 year
period between 2003 and 2015. Therefore, our technique
produced a number of correct selections that is 2.92 stan-
dard deviations above the expected number of correct
predictions if weighted random selection were used. If
uniform random selection is used, our technique produces
a number of correct selections that is 3.94 standard devia-
tions above the expected value of 3.26 correct selections.
This is a key comparison to establish the performance
of our technique, because what we observe is that our
technique performs significantly better than if we used
a form of random selection. This means that using our
technique to select potential upsets is a more reliable way
of identifying potential upsets than choosing match-ups
randomly. However, the variance of our technique, 4.667,
is significantly higher than that of random selection.

We also applied our technique to the 11 and 12 seeded
games instead of the 13, 14, and 15 seeded games. For the
11 and 12 seeded games, we modified Algorithm 1 to select
three teams instead of two. Table 5 provides the games
selected. When run on the 11 and 12 seeds, there were
cases where we had ties; the last step of our technique
found multiple games that were selected with the same
frequency. In order to resolve this, we count the number
of correct selections by weighting each correct selection
by the frequency with which it would be chosen if the ties
were resolved by random selection. For example, if two
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Table 5: Games selected.

Year Game seed Winning team Losing team Upset
selected
correctly

2015 11 UCLA S Methodist True
2015 11 Butler Texas False
2015 12 Utah Ste F Austin False
2014 12 Saint Louis NC State False
2014 11 N Carolina Providence False
2014 12 N Dakota St Oklahoma True
2014 11 Tennessee U Mass True
2013 11 Arizona Belmont False
2013 11 Memphis St Marys False
2013 12 Oregon Oklahoma St True
2012 12 New Mexico Lg Beach St False
2012 11 Cincinnati Texas False
2012 11 NC State San Diego St True
2011 12 Richmond Vanderbilt True
2011 12 Arizona Memphis False
2011 11 Cincinnati Missouri False
2010 11 Tennessee San Diego St False
2010 11 Old Dominion Notre Dame True
2010 12 Cornell Temple True
2009 12 W Kentucky Illinois True
2009 11 Marquette Utah State False
2009 11 UCLA VCU False
2008 12 Notre Dame Geo Mason False
2008 11 Oklahoma St Josephs False
2008 12 W Kentucky Drake True
2007 12 USC Arkansas False
2007 12 Butler Old Dominion False
2007 11 Louisville Stanford False
2007 11 Vanderbilt Geo Wshgtn False
2007 11 Winthrop Notre Dame True
2006 11 WI-Milwkee Oklahoma True
2006 11 Indiana San Diego St False
2006 12 Washington Utah State False
2005 12 GA Tech Geo Wshgtn False
2005 12 Villanova New Mexico False
2005 11 Texas Tech UCLA False
2004 12 Illinois Murray St False
2004 12 Syracuse BYU False
2004 11 Vanderbilt W Michigan False
2003 11 Maryland NC-Wilmgton False
2003 11 Oklahoma St U Penn False
2003 11 Missouri S Illinois False
2003 12 Butler Miss State True

Shaded rows indicate games selected correctly.

teams were tied for third-most-selected and one of them
was a correct upset selection, those two teams would be
combined into a score of 0.5. In the event of a three-way tie
for second with one correct selection, the resulting score
would be 1/3. However, the accuracy of the model for the
11 and 12 seeded games was comparable to that expected
by weighted random selection. If weighted random selec-
tion were used, the expected number of correct selections

would be 12.71 with a variance of 8.56, while our technique
selected 10.67 upsets correctly. One hypothesis as to why
this might be the case is that there is enough information
that can be drawn from the covariates of upsets in the past
that makes it possible to predict upsets in the future better
than randomly selecting teams for 13–15 seeded games,
while the 11 and 12 seeded games do not contain enough
distinguishing information in the statistics available to us.
Because the gap between the seeds in the 11 and 12 seeded
games is not as large, the inherent randomness of the
games might be overwhelming the information that the
covariates provide about what causes an upset to occur for
those seeds.

As another way to assess performance, we attempted
to estimate the drop-off of our technique by selecting four
teams each year instead of two, thereby providing a “next-
best” scenario. Selecting four teams each year resulted in
13 of 52 correct selections (compared with 10 of 26 when
selecting two each year). This is a significant drop in ac-
curacy, reducing our success rate from 38% to 25% with a
marginal drop of three correct selections of 26 additional
selected teams, equating to an 11% marginal success rate.

In order to determine the computational effectiveness
of our technique, each step of the technique was run 10
times on a computer with an Intel Xeon E3-1246 quad-core
processor at 3.5 GHz with 16 GB of memory. The runtimes
for each step are listed in Table 6.

As noted above,wemade a compromise in the training
procedure where we trained the extra-trees classifier on
data from all years, rather than just the years prior to the
target year. This could potentially cause data leakage, but
was done due to the limited amount of available data. To
address this, we also performed some experiments where
we trained the classifier on a subset of the available data.
First, we tried training the classifier using all the games
except those from the target year. For example, if we were
attempting to select games for 2013, the classifier was
trained on games from 1998–2012 and 2014–2015. This led
to us selecting 8 of 26 games correctly (compared to 10
using all the games as described above). We also tried
training on all the games before the target year, which
for a target year of 2013 means we trained the classifier

Table 6: Runtimes for each step of technique.

Step Min (s) Mean (s) Max (s)

Compute match-up statistics 1 1 1
Identify useful match-up statistics 138 154 170
Find similar match-ups 2331 2425 2607
Combine models 25 27 30
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Figure 2: Frequency of number of correct selections by Lopez and
Matthews (2015) model.

on games from 1998 to 2012. However, due to the small
number of upsets, we only tested this method for years
2011–2015, because years prior to 2011 had very few upsets
in the training set. In those five years, we selected 2 of 10
games correctly, compared to 4 using the full dataset for
training.

In order to further evaluate the efficacy of our tech-
nique, we compare it to other methods found in the litera-
ture. We compared our results to the technique described
in Lopez and Matthews (2015), which predicts the prob-
ability of each team winning against each other team.
Therefore, to make a fair comparison, we used the Lopez
and Matthews (2015) model to generate the probabilities
of each low seed winning their first-round game and se-
lected the two games where the lower seeded team had
the highest probability of winning. The model was trained
separately for each year using all games that occurred
prior to that year’s tournament. One note is that their
model uses the home team stats and away team stats as
inputs to their logistic regression. In the event of a neutral
game, we randomly assigned one team as home and one
team as away in addition to marking the game as neutral
using the neutral indicator in their model. Due to this
randomization, we ran their model 100 times and for each
run counted how many upsets would have been selected
correctly. Their model gives an average of 7.46 upsets cor-
rectly out of 26 selections, with a maximum of nine and a
minimumof six. Figure 2 shows a histogramof the number
of upsets correctly predicted by the Lopez and Matthews
(2015) technique. Because our technique selected 10 up-
sets correctly out of 26 selections, our techniquewas better
over the given time period. However, their approach has
a variance of 0.669 in the number of correctly predicted
upsets, which is significantly better than ours.

Bryan, Steinke, andWilkins (2006) did an analysis on
predicting round-of-64 upsets using a regression model
where they define an upset as a game where the lower-
seeded team wins and a nonupset as a game where the
higher-seeded team wins. Their results were that 41.8%
of the games they selected as upsets were actually upsets
and 80.99% of the games they selected as nonupsets were
actually nonupsets between 1994 and 2005 and 36.36%
of the games they selected as upsets were actually upsets
and 80.26% of the games they selected as nonupsets were
actuallynonupsets between 2000and2005.However, they
declared their model as successfully predicting an upset if
“it predicts a probability of upset greater than the historic
proportion of games at the given seed difference that re-
sulted in an upset”. They also considered upsets as a 10,
11, 12, or 13-seed winning a game, whereas we consider an
upset as a 13, 14, or 15-seed winning. Because we choose
games specifically as upsets rather than those where the
weaker team is more likely to win than the historical aver-
age and have a different definition for what constitutes an
upset, the results are not directly comparable.

5 Conclusions
This paper presents a technique to select round-of-64
NCAA tournament upsets using game statistics. The tech-
nique identifies important statistics and uses those statis-
tics to find match-ups similar to historical upsets. The
performance of the technique was tested by using the
technique to select potential upsets for the years 2003-
2015. The techniquewas shown to significantly outperform
random selection, both when the random selection was
done with a uniform random distribution and when the
distribution was weighted by the historical frequency of
each seed winning a round-of-64 game.

There are several limitations to the technique used in
this paper. First, the identification of important match-up
statistics was done using all the years of data rather than
identifying the important statistics using only the data
that were available in each year. This was done due to the
limited amount of data available; however, in the future
there will be enough data for the choice of statistics to not
vary from year to year. Furthermore, the technique as pre-
sented is limited to choosing a fixed number of potential
upsets each year. This is a limitation because historical
data shows that the number of upsets that occurs in a year
can vary fromzero to three, and this technique does not ac-
count for that. BOSS could be adapted to identify the most
likely upset or the threemost likely upsets by changing the
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desired size of the control group; additional modifications
would be needed for BOSS to decide whether no upsets
should occur. Another limitation to the technique is its
high variability; reducing this variability is left as a direc-
tion for future research. Finally, due to the limited number
of years for which we have data, it is difficult to optimize
the parameters of the technique. Because the number of
upsets being selected is so small, even a small variation
in the number of upsets selected correctly presents itself
as a large change in the accuracy percentage. This means
that some of the parameters chosen might not be optimal,
but rather happened to perform slightly better on the small
amount of data we had. As more years of data become
available, the technique will be able to be tested more
thoroughly.

Some potential areas for future work are experimen-
tation with different match-up statistics, different meth-
ods for matchup-statistic combination selection (namely
modifications to Algorithm 1), and the adaptation of the
technique to be able to select a varying number of games
as potential upsets. Additional match-up statistics to con-
sider could include statistics such as the distance teams
have to travel for each game or the injury status of each
teamat the time of the game. The primary improvement for
this technique, however, will come with the availability of
more data that will allow for further experimentation and
testing.More datawill allow thedetermination of accuracy
to be more robust and less sensitive to each individual up-
set. Conference tournaments provide one potential source
of additional data; including this is left as a direction for
future work. Given the small size of the control group,
another direction for future work is to develop efficient
algorithms for solving BOSS directly without the use of
MIP models. This paper enumerated through all combina-
tions of possible control groups as a substitute to solving
the MIP due to the small size of the data, but on larger
problems alternative methods could be useful.

A Appendix

A.1 Definitions of statistics used

Statistics and their definitions from TeamRankings.com
(TeamRankings 2015).
– Possession:One instance of a teamcontrolling the ball

until it scores, loses the ball, or commits a violation
– Steal: One instance of a defensive player forcing a

turnover by acquiring or deflecting the ball from an
offensive player

– Assist: One instance of a player passing the ball to a
teammate in a way that directly leads to a field goal

– Effective possession ratio: (Possessions + offensive
rebounds − turnovers)/Possessions

– Games played: Number of games a team has played in
the current season before the tournament begins

– Extra scoring chances per game:Offensive rebounds+
opponent turnovers− opponent offensive rebounds−
turnovers

– Opponent floor percentage: Fraction of the opponent
team’s possessions that result in at least one point.

– Personal fouls per possession: Fouls/Possessions
– Opponent steals per defensive play: Opponent

steals/Opponent defensive plays
– Assist/turnover ratio: Assists/Turnovers
– Personal fouls per defensive play: Personal

fouls/Defensive plays
– Opponent steals per possession: Opponent

steals/Opponent possessions
– Opponent average scoringmargin: Average number of

points between the opponent team and other teams
they have played against (where positive is a victory
and negative is a loss)

– Average scoring margin: Average number of points
between the teamand their opponents (where positive
is a victory and negative is a loss)

– Opponent three point percentage: Three pointers
made/Three pointers attempted

– Steals per defensive play: Steals/Defensive plays
– Steals per possession: Steals/Possessions
– Average 2nd half margin: Average difference between

the number of points the team scores in the 2nd half
and the number of points their opponents score in the
2nd half.

A.2 MIP formulation

Let the following terms be defined:
– T: Treatment group
– C: Control pool
– G: Control group
– X: Set of covariates
– Ti: Set of unique values in T for covariate i ∈ X
– Ci: Set of unique values in C for covariate i ∈ X
– Vi: Set of unique values in T ∪ C for covariate i ∈ X
– V i, j: jth smallest value in Vi
– Ki: Ki = K(Ti, Gi, Vi) for i ∈ X: Kolmogorov-Smirnov

statistic of the Treatment and Control groups for co-
variate i ∈ X:
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– Ri: Ri = R(Ti, G) for i ∈ X: Relative difference in sum
between the Treatment and Control group for covari-
ate i ∈ X

– yi: yi = max(Ki, Ri): Larger of the Kolmogorov–
Smirnov statistic and the relative difference between
the treatment and control group for covariate i ∈ X

– αc: Binary variable which is 1 (0) if game c ∈ C is (not)
included in the control group, otherwise 0. The games
with value 1 make up G.

– xt, i: Value of covariate i ∈ X for t ∈ T
– xc, i: Value of covariate i ∈ X for c ∈ C.
– zi, j: zi, j = |{xc, i : xc, i < Vi,j, c ∈ C}|: Number of units

in control pool with value less than jth smallest value
of Vi for each covariate i ∈ X

– Ti, j: Ti, j = |{xt, i : xt, i < Vi,j, t ∈ T}|: Number of units
in the treatment groupwith value than the jth smallest
value of Vi for each covariate i ∈ X

– β: β =
∑︀

c∈C αc/|T|: Constant that relates the size of
the treatment group to the control group

Then, BOSS can be formulated as a mixed integer linear
program (MILP):

min
∑︁
i∈X

yi (21a)

such that

zi,1 =
∑︁
c∈C

such that xc,i=Vi,1

αc ∀i ∈ X (21b)

zi,j−1+
∑︁
c∈C

such that xc,i=Vi,j

αc = zi,j ∀i ∈ X, j ∈ {2, 3, . . . , |Vi|}

(21c)
zi,j
β|T| −

Ti,j
|T| ≤ yi for all i ∈ X, j ∈ {1, 2, . . . , |Vi|} (21d)

Ti,j
|T| −

zi,j
β|T| ≤ yi for all i ∈ X, j ∈ {1, 2, . . . , |Vi|} (21e)∑︀

c∈C xc,iαc − β
∑︀

t∈T xt,i
β

∑︀
t∈T xt,i

≤ yi for all i ∈ X (21f)

β
∑︀

t∈T xt,i −
∑︀

c∈C xc,iαc
β

∑︀
t∈T xt,i

≤ yi for all i ∈ X (21g)∑︁
c∈C

αc = β|T| (21h)

αc ∈ {0, 1} for all c ∈ C (21i)

Equation (21a) minimizes the sum of the maximum of the
Kolmogorov-Smirnov (KS) statistic and the relative differ-
ence for each covariate. Constraint (21c) sets the value of
the empirical distribution at each point, and constraints
(21d) and (21e) set the difference in empirical distributions
at each point to be less than or equal to the KS statistic for

that covariate. Constraints (21f) and (21g) set the relative
difference constraints. Because the goal was to have BOSS
select three teams, β was chosen depending on the size
of the treatment group such that the control group would
consist of three teams.
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